Trimmer:特定于上下文的代码缩减

Aatira Anum Ahmad, Mubashir Anwar, Hashim Sharif, Ashish Gehani, Fareed Zaffar
{"title":"Trimmer:特定于上下文的代码缩减","authors":"Aatira Anum Ahmad, Mubashir Anwar, Hashim Sharif, Ashish Gehani, Fareed Zaffar","doi":"10.1145/3551349.3559529","DOIUrl":null,"url":null,"abstract":"We present Trimmer, a state-of-the-art tool for reducing code size. Trimmer reduces code sizes by specializing programs with respect to constant inputs provided by developers. The static data can be provided as command-line options or through configuration files. The constants define the features that must be retained, which in turn determine the features that are unused in a specific deployment (and can therefore be removed). Trimmer includes sophisticated compiler transformations for input specialization, supports precise yet efficient context-sensitive inter-procedural constant propagation, and introduces a custom loop unroller. Trimmer is easy-to-use and extensively parameterized. We discuss how Trimmer can be configured by developers to explicitly trade analysis precision and specialization time. We also provide a high-level description of Trimmer’s static analysis passes. The source code is publicly available at: https://github.com/ashish-gehani/Trimmer. A video demonstration can be found here: https://youtu.be/6pAuJ68INnI.","PeriodicalId":197939,"journal":{"name":"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Trimmer: Context-Specific Code Reduction\",\"authors\":\"Aatira Anum Ahmad, Mubashir Anwar, Hashim Sharif, Ashish Gehani, Fareed Zaffar\",\"doi\":\"10.1145/3551349.3559529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Trimmer, a state-of-the-art tool for reducing code size. Trimmer reduces code sizes by specializing programs with respect to constant inputs provided by developers. The static data can be provided as command-line options or through configuration files. The constants define the features that must be retained, which in turn determine the features that are unused in a specific deployment (and can therefore be removed). Trimmer includes sophisticated compiler transformations for input specialization, supports precise yet efficient context-sensitive inter-procedural constant propagation, and introduces a custom loop unroller. Trimmer is easy-to-use and extensively parameterized. We discuss how Trimmer can be configured by developers to explicitly trade analysis precision and specialization time. We also provide a high-level description of Trimmer’s static analysis passes. The source code is publicly available at: https://github.com/ashish-gehani/Trimmer. A video demonstration can be found here: https://youtu.be/6pAuJ68INnI.\",\"PeriodicalId\":197939,\"journal\":{\"name\":\"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3551349.3559529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3551349.3559529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们介绍Trimmer,一个用于减少代码大小的最先进的工具。Trimmer根据开发人员提供的恒定输入对程序进行专门化,从而减少了代码的大小。静态数据可以作为命令行选项或通过配置文件提供。常量定义了必须保留的特性,进而确定了在特定部署中不使用的特性(因此可以删除)。Trimmer包括用于输入专门化的复杂编译器转换,支持精确而高效的上下文敏感的过程间常量传播,并引入自定义循环展开器。修剪器易于使用和广泛参数化。我们讨论了开发人员如何配置Trimmer以显式地交换分析精度和专门化时间。我们还提供了Trimmer静态分析过程的高级描述。源代码可以在:https://github.com/ashish-gehani/Trimmer上公开获得。视频演示可以在这里找到:https://youtu.be/6pAuJ68INnI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trimmer: Context-Specific Code Reduction
We present Trimmer, a state-of-the-art tool for reducing code size. Trimmer reduces code sizes by specializing programs with respect to constant inputs provided by developers. The static data can be provided as command-line options or through configuration files. The constants define the features that must be retained, which in turn determine the features that are unused in a specific deployment (and can therefore be removed). Trimmer includes sophisticated compiler transformations for input specialization, supports precise yet efficient context-sensitive inter-procedural constant propagation, and introduces a custom loop unroller. Trimmer is easy-to-use and extensively parameterized. We discuss how Trimmer can be configured by developers to explicitly trade analysis precision and specialization time. We also provide a high-level description of Trimmer’s static analysis passes. The source code is publicly available at: https://github.com/ashish-gehani/Trimmer. A video demonstration can be found here: https://youtu.be/6pAuJ68INnI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信