{"title":"将机器学习集成到医疗决策支持系统中,以解决丢失患者数据的问题","authors":"Atif Khan, J. Doucette, R. Cohen, D. Lizotte","doi":"10.1109/ICMLA.2012.82","DOIUrl":null,"url":null,"abstract":"In this paper, we present a framework which enables medical decision making in the presence of partial information. At its core is ontology-based automated reasoning, machine learning techniques are integrated to enhance existing patient datasets in order to address the issue of missing data. Our approach supports interoperability between different health information systems. This is clarified in a sample implementation that combines three separate datasets (patient data, drug-drug interactions and drug prescription rules) to demonstrate the effectiveness of our algorithms in producing effective medical decisions. In short, we demonstrate the potential for machine learning to support a task where there is a critical need from medical professionals by coping with missing or noisy patient data and enabling the use of multiple medical datasets.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Integrating Machine Learning Into a Medical Decision Support System to Address the Problem of Missing Patient Data\",\"authors\":\"Atif Khan, J. Doucette, R. Cohen, D. Lizotte\",\"doi\":\"10.1109/ICMLA.2012.82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a framework which enables medical decision making in the presence of partial information. At its core is ontology-based automated reasoning, machine learning techniques are integrated to enhance existing patient datasets in order to address the issue of missing data. Our approach supports interoperability between different health information systems. This is clarified in a sample implementation that combines three separate datasets (patient data, drug-drug interactions and drug prescription rules) to demonstrate the effectiveness of our algorithms in producing effective medical decisions. In short, we demonstrate the potential for machine learning to support a task where there is a critical need from medical professionals by coping with missing or noisy patient data and enabling the use of multiple medical datasets.\",\"PeriodicalId\":157399,\"journal\":{\"name\":\"2012 11th International Conference on Machine Learning and Applications\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2012.82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrating Machine Learning Into a Medical Decision Support System to Address the Problem of Missing Patient Data
In this paper, we present a framework which enables medical decision making in the presence of partial information. At its core is ontology-based automated reasoning, machine learning techniques are integrated to enhance existing patient datasets in order to address the issue of missing data. Our approach supports interoperability between different health information systems. This is clarified in a sample implementation that combines three separate datasets (patient data, drug-drug interactions and drug prescription rules) to demonstrate the effectiveness of our algorithms in producing effective medical decisions. In short, we demonstrate the potential for machine learning to support a task where there is a critical need from medical professionals by coping with missing or noisy patient data and enabling the use of multiple medical datasets.