将机器学习集成到医疗决策支持系统中,以解决丢失患者数据的问题

Atif Khan, J. Doucette, R. Cohen, D. Lizotte
{"title":"将机器学习集成到医疗决策支持系统中,以解决丢失患者数据的问题","authors":"Atif Khan, J. Doucette, R. Cohen, D. Lizotte","doi":"10.1109/ICMLA.2012.82","DOIUrl":null,"url":null,"abstract":"In this paper, we present a framework which enables medical decision making in the presence of partial information. At its core is ontology-based automated reasoning, machine learning techniques are integrated to enhance existing patient datasets in order to address the issue of missing data. Our approach supports interoperability between different health information systems. This is clarified in a sample implementation that combines three separate datasets (patient data, drug-drug interactions and drug prescription rules) to demonstrate the effectiveness of our algorithms in producing effective medical decisions. In short, we demonstrate the potential for machine learning to support a task where there is a critical need from medical professionals by coping with missing or noisy patient data and enabling the use of multiple medical datasets.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Integrating Machine Learning Into a Medical Decision Support System to Address the Problem of Missing Patient Data\",\"authors\":\"Atif Khan, J. Doucette, R. Cohen, D. Lizotte\",\"doi\":\"10.1109/ICMLA.2012.82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a framework which enables medical decision making in the presence of partial information. At its core is ontology-based automated reasoning, machine learning techniques are integrated to enhance existing patient datasets in order to address the issue of missing data. Our approach supports interoperability between different health information systems. This is clarified in a sample implementation that combines three separate datasets (patient data, drug-drug interactions and drug prescription rules) to demonstrate the effectiveness of our algorithms in producing effective medical decisions. In short, we demonstrate the potential for machine learning to support a task where there is a critical need from medical professionals by coping with missing or noisy patient data and enabling the use of multiple medical datasets.\",\"PeriodicalId\":157399,\"journal\":{\"name\":\"2012 11th International Conference on Machine Learning and Applications\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2012.82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在本文中,我们提出了一个框架,使医疗决策在部分信息的存在。其核心是基于本体的自动推理,集成了机器学习技术来增强现有的患者数据集,以解决数据缺失的问题。我们的方法支持不同卫生信息系统之间的互操作性。这在一个结合了三个独立数据集(患者数据、药物-药物相互作用和药物处方规则)的示例实现中得到了澄清,以证明我们的算法在产生有效医疗决策方面的有效性。简而言之,我们展示了机器学习的潜力,通过处理缺失或嘈杂的患者数据并启用多个医疗数据集,来支持医疗专业人员迫切需要的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Machine Learning Into a Medical Decision Support System to Address the Problem of Missing Patient Data
In this paper, we present a framework which enables medical decision making in the presence of partial information. At its core is ontology-based automated reasoning, machine learning techniques are integrated to enhance existing patient datasets in order to address the issue of missing data. Our approach supports interoperability between different health information systems. This is clarified in a sample implementation that combines three separate datasets (patient data, drug-drug interactions and drug prescription rules) to demonstrate the effectiveness of our algorithms in producing effective medical decisions. In short, we demonstrate the potential for machine learning to support a task where there is a critical need from medical professionals by coping with missing or noisy patient data and enabling the use of multiple medical datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信