脑卒中康复患者活动常规发现无数据注释

J. Seiter, A. Derungs, C. Schuster-Amft, O. Amft, G. Tröster
{"title":"脑卒中康复患者活动常规发现无数据注释","authors":"J. Seiter, A. Derungs, C. Schuster-Amft, O. Amft, G. Tröster","doi":"10.4108/icst.pervasivehealth.2014.255275","DOIUrl":null,"url":null,"abstract":"In this work, we investigated whether activity routines of stroke rehabilitation patients can be discovered from body-worn motion sensor data and without data annotation using topic modeling. Information about the activity routines performed by stroke patients during daily life could add valuable information to personal therapy goals. As topic model input, we used a set of activity primitives derived from upper and lower extremity motion sensor data. We monitored three stroke patients during their daily life in a day care center for 8 days each within 3 weeks. We achieved up to 88% accuracy for activity routine discovery for subject-dependent evaluations. Our discovery approach seems suitable for activity routine discovery in rehabilitation patients.","PeriodicalId":120856,"journal":{"name":"Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Activity routine discovery in stroke rehabilitation patients without data annotation\",\"authors\":\"J. Seiter, A. Derungs, C. Schuster-Amft, O. Amft, G. Tröster\",\"doi\":\"10.4108/icst.pervasivehealth.2014.255275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we investigated whether activity routines of stroke rehabilitation patients can be discovered from body-worn motion sensor data and without data annotation using topic modeling. Information about the activity routines performed by stroke patients during daily life could add valuable information to personal therapy goals. As topic model input, we used a set of activity primitives derived from upper and lower extremity motion sensor data. We monitored three stroke patients during their daily life in a day care center for 8 days each within 3 weeks. We achieved up to 88% accuracy for activity routine discovery for subject-dependent evaluations. Our discovery approach seems suitable for activity routine discovery in rehabilitation patients.\",\"PeriodicalId\":120856,\"journal\":{\"name\":\"Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/icst.pervasivehealth.2014.255275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/icst.pervasivehealth.2014.255275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在这项工作中,我们研究了是否可以从身体穿戴的运动传感器数据中发现卒中康复患者的活动惯例,而不使用主题建模进行数据注释。脑卒中患者在日常生活中进行的日常活动可以为个人治疗目标提供有价值的信息。作为主题模型输入,我们使用了一组来自上肢和下肢运动传感器数据的活动原语。我们在三周内对三名中风患者在日托中心的日常生活进行了8天的监测。我们在受试者依赖评估的活动常规发现方面达到了88%的准确率。我们的发现方法似乎适用于康复患者的活动常规发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Activity routine discovery in stroke rehabilitation patients without data annotation
In this work, we investigated whether activity routines of stroke rehabilitation patients can be discovered from body-worn motion sensor data and without data annotation using topic modeling. Information about the activity routines performed by stroke patients during daily life could add valuable information to personal therapy goals. As topic model input, we used a set of activity primitives derived from upper and lower extremity motion sensor data. We monitored three stroke patients during their daily life in a day care center for 8 days each within 3 weeks. We achieved up to 88% accuracy for activity routine discovery for subject-dependent evaluations. Our discovery approach seems suitable for activity routine discovery in rehabilitation patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信