非膨胀图中的有效阻力

Dongrun Cai, Xue-gang Chen, Pan Peng
{"title":"非膨胀图中的有效阻力","authors":"Dongrun Cai, Xue-gang Chen, Pan Peng","doi":"10.48550/arXiv.2307.01218","DOIUrl":null,"url":null,"abstract":"Effective resistances are ubiquitous in graph algorithms and network analysis. In this work, we study sublinear time algorithms to approximate the effective resistance of an adjacent pair $s$ and $t$. We consider the classical adjacency list model for local algorithms. While recent works have provided sublinear time algorithms for expander graphs, we prove several lower bounds for general graphs of $n$ vertices and $m$ edges: 1.It needs $\\Omega(n)$ queries to obtain $1.01$-approximations of the effective resistance of an adjacent pair $s$ and $t$, even for graphs of degree at most 3 except $s$ and $t$. 2.For graphs of degree at most $d$ and any parameter $\\ell$, it needs $\\Omega(m/\\ell)$ queries to obtain $c \\cdot \\min\\{d, \\ell\\}$-approximations where $c>0$ is a universal constant. Moreover, we supplement the first lower bound by providing a sublinear time $(1+\\epsilon)$-approximation algorithm for graphs of degree 2 except the pair $s$ and $t$. One of our technical ingredients is to bound the expansion of a graph in terms of the smallest non-trivial eigenvalue of its Laplacian matrix after removing edges. We discover a new lower bound on the eigenvalues of perturbed graphs (resp. perturbed matrices) by incorporating the effective resistance of the removed edge (resp. the leverage scores of the removed rows), which may be of independent interest.","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effective Resistances in Non-Expander Graphs\",\"authors\":\"Dongrun Cai, Xue-gang Chen, Pan Peng\",\"doi\":\"10.48550/arXiv.2307.01218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective resistances are ubiquitous in graph algorithms and network analysis. In this work, we study sublinear time algorithms to approximate the effective resistance of an adjacent pair $s$ and $t$. We consider the classical adjacency list model for local algorithms. While recent works have provided sublinear time algorithms for expander graphs, we prove several lower bounds for general graphs of $n$ vertices and $m$ edges: 1.It needs $\\\\Omega(n)$ queries to obtain $1.01$-approximations of the effective resistance of an adjacent pair $s$ and $t$, even for graphs of degree at most 3 except $s$ and $t$. 2.For graphs of degree at most $d$ and any parameter $\\\\ell$, it needs $\\\\Omega(m/\\\\ell)$ queries to obtain $c \\\\cdot \\\\min\\\\{d, \\\\ell\\\\}$-approximations where $c>0$ is a universal constant. Moreover, we supplement the first lower bound by providing a sublinear time $(1+\\\\epsilon)$-approximation algorithm for graphs of degree 2 except the pair $s$ and $t$. One of our technical ingredients is to bound the expansion of a graph in terms of the smallest non-trivial eigenvalue of its Laplacian matrix after removing edges. We discover a new lower bound on the eigenvalues of perturbed graphs (resp. perturbed matrices) by incorporating the effective resistance of the removed edge (resp. the leverage scores of the removed rows), which may be of independent interest.\",\"PeriodicalId\":201778,\"journal\":{\"name\":\"Embedded Systems and Applications\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Embedded Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2307.01218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.01218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

有效阻力在图算法和网络分析中无处不在。在这项工作中,我们研究了次线性时间算法来近似相邻对$s$和$t$的有效电阻。我们考虑局部算法的经典邻接表模型。虽然最近的工作提供了扩展图的次线性时间算法,但我们证明了$n$顶点和$m$边的一般图的几个下界:1。它需要$\Omega(n)$查询来获得$1.01$ -相邻对$s$和$t$的有效阻力的近似值,即使对于除了$s$和$t$之外的度最多为3的图也是如此。2.对于度数最多为$d$和任何参数$\ell$的图,需要查询$\Omega(m/\ell)$来获得$c \cdot \min\{d, \ell\}$ -近似,其中$c>0$是一个通用常数。此外,我们通过提供除$s$和$t$对之外的2次图的次线性时间$(1+\epsilon)$逼近算法来补充第一个下界。我们的技术成分之一是用去除边后的拉普拉斯矩阵的最小非平凡特征值来约束图的展开。我们发现了摄动图的特征值的一个新的下界。摄动矩阵),通过结合去除边缘的有效阻力(参见。删除的行的杠杆分数),这可能是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective Resistances in Non-Expander Graphs
Effective resistances are ubiquitous in graph algorithms and network analysis. In this work, we study sublinear time algorithms to approximate the effective resistance of an adjacent pair $s$ and $t$. We consider the classical adjacency list model for local algorithms. While recent works have provided sublinear time algorithms for expander graphs, we prove several lower bounds for general graphs of $n$ vertices and $m$ edges: 1.It needs $\Omega(n)$ queries to obtain $1.01$-approximations of the effective resistance of an adjacent pair $s$ and $t$, even for graphs of degree at most 3 except $s$ and $t$. 2.For graphs of degree at most $d$ and any parameter $\ell$, it needs $\Omega(m/\ell)$ queries to obtain $c \cdot \min\{d, \ell\}$-approximations where $c>0$ is a universal constant. Moreover, we supplement the first lower bound by providing a sublinear time $(1+\epsilon)$-approximation algorithm for graphs of degree 2 except the pair $s$ and $t$. One of our technical ingredients is to bound the expansion of a graph in terms of the smallest non-trivial eigenvalue of its Laplacian matrix after removing edges. We discover a new lower bound on the eigenvalues of perturbed graphs (resp. perturbed matrices) by incorporating the effective resistance of the removed edge (resp. the leverage scores of the removed rows), which may be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信