论奥古斯丁平均数的存在性

Hao-Chung Cheng, Barış Nakiboğlu
{"title":"论奥古斯丁平均数的存在性","authors":"Hao-Chung Cheng, Barış Nakiboğlu","doi":"10.1109/ITW48936.2021.9611513","DOIUrl":null,"url":null,"abstract":"The existence of a unique Augustin mean and its invariance under the Augustin operator are established for arbitrary input distributions with finite Augustin information for channels with countably generated output $\\sigma$-algebras. The existence is established by representing the conditional Rényi divergence as a lower semi-continuous and convex functional in an appropriately chosen uniformly convex space and then invoking the Banach-Saks property in conjunction with the lower semi-continuity and the convexity. A new family of operators is proposed to establish the invariance of the Augustin mean under the Augustin operator for orders greater than one. Some members of this new family strictly decrease the conditional Rényi divergence, when applied to the second argument of the divergence, unless the second argument is a fixed point of the Augustin operator.","PeriodicalId":325229,"journal":{"name":"2021 IEEE Information Theory Workshop (ITW)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Existence of the Augustin Mean\",\"authors\":\"Hao-Chung Cheng, Barış Nakiboğlu\",\"doi\":\"10.1109/ITW48936.2021.9611513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence of a unique Augustin mean and its invariance under the Augustin operator are established for arbitrary input distributions with finite Augustin information for channels with countably generated output $\\\\sigma$-algebras. The existence is established by representing the conditional Rényi divergence as a lower semi-continuous and convex functional in an appropriately chosen uniformly convex space and then invoking the Banach-Saks property in conjunction with the lower semi-continuity and the convexity. A new family of operators is proposed to establish the invariance of the Augustin mean under the Augustin operator for orders greater than one. Some members of this new family strictly decrease the conditional Rényi divergence, when applied to the second argument of the divergence, unless the second argument is a fixed point of the Augustin operator.\",\"PeriodicalId\":325229,\"journal\":{\"name\":\"2021 IEEE Information Theory Workshop (ITW)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW48936.2021.9611513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW48936.2021.9611513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于具有可数生成输出$\sigma$-代数的通道,建立了具有有限Augustin信息的任意输入分布的唯一Augustin均值的存在性及其在Augustin算子下的不变性。通过在适当选择的一致凸空间中,将条件rsamnyi散度表示为下半连续凸泛函,然后调用下半连续和凸性的Banach-Saks性质,建立了其存在性。提出了一种新的算子族,用于在大于1阶的奥古斯丁算子下建立奥古斯丁均值的不变性。当应用于散度的第二个参数时,这个新族的一些成员严格地减小了条件r逍遥度,除非第二个参数是奥古斯丁算子的不动点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Existence of the Augustin Mean
The existence of a unique Augustin mean and its invariance under the Augustin operator are established for arbitrary input distributions with finite Augustin information for channels with countably generated output $\sigma$-algebras. The existence is established by representing the conditional Rényi divergence as a lower semi-continuous and convex functional in an appropriately chosen uniformly convex space and then invoking the Banach-Saks property in conjunction with the lower semi-continuity and the convexity. A new family of operators is proposed to establish the invariance of the Augustin mean under the Augustin operator for orders greater than one. Some members of this new family strictly decrease the conditional Rényi divergence, when applied to the second argument of the divergence, unless the second argument is a fixed point of the Augustin operator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信