使用多个分类器的互联网流量分类

Fatemeh Ghofrani, A. Keshavarz-Haddad, A. Jamshidi
{"title":"使用多个分类器的互联网流量分类","authors":"Fatemeh Ghofrani, A. Keshavarz-Haddad, A. Jamshidi","doi":"10.1109/IKT.2015.7288772","DOIUrl":null,"url":null,"abstract":"In this work, we propose a novel scheme for internet traffic classification using combination of three different classifiers. The proposed classification scheme consists of three steps. In the first step, in order to achieve discrete features, the size of the first four packets of each flow is discretized based on an entropy-based algorithm. In the next step, three classifiers including K-NN, SVM and Naive Bayes are employed to determine the label of unknown flows. In the last step, the outputs of three classifiers are combined using four combiner schemes including Dynamic Classifier Selection by Local Accuracy (DCS-LA), Naive Bayes (NB), Majority Voting (MV) and Oracle in order to make final decision on the label of unknown flows and achieve the highest possible accuracy. We conduct experiments on a dataset including only 50 training flow per application to evaluate the effectiveness of our classification scheme. The results indicate that our proposed internet traffic classification scheme is able to achieve a high level of accuracy.","PeriodicalId":338953,"journal":{"name":"2015 7th Conference on Information and Knowledge Technology (IKT)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Internet traffic classification using multiple classifiers\",\"authors\":\"Fatemeh Ghofrani, A. Keshavarz-Haddad, A. Jamshidi\",\"doi\":\"10.1109/IKT.2015.7288772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a novel scheme for internet traffic classification using combination of three different classifiers. The proposed classification scheme consists of three steps. In the first step, in order to achieve discrete features, the size of the first four packets of each flow is discretized based on an entropy-based algorithm. In the next step, three classifiers including K-NN, SVM and Naive Bayes are employed to determine the label of unknown flows. In the last step, the outputs of three classifiers are combined using four combiner schemes including Dynamic Classifier Selection by Local Accuracy (DCS-LA), Naive Bayes (NB), Majority Voting (MV) and Oracle in order to make final decision on the label of unknown flows and achieve the highest possible accuracy. We conduct experiments on a dataset including only 50 training flow per application to evaluate the effectiveness of our classification scheme. The results indicate that our proposed internet traffic classification scheme is able to achieve a high level of accuracy.\",\"PeriodicalId\":338953,\"journal\":{\"name\":\"2015 7th Conference on Information and Knowledge Technology (IKT)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th Conference on Information and Knowledge Technology (IKT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IKT.2015.7288772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th Conference on Information and Knowledge Technology (IKT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IKT.2015.7288772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在这项工作中,我们提出了一种使用三种不同分类器组合的互联网流量分类新方案。提出的分类方案包括三个步骤。第一步,为了实现离散特征,基于熵算法对每个流的前四个数据包的大小进行离散化。下一步,使用K-NN、SVM和朴素贝叶斯三种分类器确定未知流的标签。最后一步,使用局部精度动态分类器选择(DCS-LA)、朴素贝叶斯(NB)、多数投票(MV)和Oracle四种组合方案对三个分类器的输出进行组合,以最终决定未知流的标签并达到尽可能高的精度。我们在每个应用程序只包含50个训练流的数据集上进行实验,以评估我们的分类方案的有效性。结果表明,本文提出的互联网流量分类方案能够达到较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Internet traffic classification using multiple classifiers
In this work, we propose a novel scheme for internet traffic classification using combination of three different classifiers. The proposed classification scheme consists of three steps. In the first step, in order to achieve discrete features, the size of the first four packets of each flow is discretized based on an entropy-based algorithm. In the next step, three classifiers including K-NN, SVM and Naive Bayes are employed to determine the label of unknown flows. In the last step, the outputs of three classifiers are combined using four combiner schemes including Dynamic Classifier Selection by Local Accuracy (DCS-LA), Naive Bayes (NB), Majority Voting (MV) and Oracle in order to make final decision on the label of unknown flows and achieve the highest possible accuracy. We conduct experiments on a dataset including only 50 training flow per application to evaluate the effectiveness of our classification scheme. The results indicate that our proposed internet traffic classification scheme is able to achieve a high level of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信