通过模糊聚类提高不平衡数据分类的轮作林性能

M. Hosseinzadeh, M. Eftekhari
{"title":"通过模糊聚类提高不平衡数据分类的轮作林性能","authors":"M. Hosseinzadeh, M. Eftekhari","doi":"10.1109/AISP.2015.7123535","DOIUrl":null,"url":null,"abstract":"In this paper, fuzzy C-means clustering and Rotation Forest (RF) are combined to construct a high performance classifier for imbalanced data classification. Data samples are clustered via fuzzy clustering and then fuzzy membership function matrix is added into data samples. Therefore, clusters memberships of samples are utilized as new features that are added into the original features. After that, RF is utilized for classification where the new set of features as well as the original ones are taken into account in the feature subspacing phase. The proposed algorithm utilizes SMOTE oversampling algorithm for balancing data samples. The obtained results confirm that our proposed method outperforms the other well-known bagging algorithms.","PeriodicalId":405857,"journal":{"name":"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Improving rotation forest performance for imbalanced data classification through fuzzy clustering\",\"authors\":\"M. Hosseinzadeh, M. Eftekhari\",\"doi\":\"10.1109/AISP.2015.7123535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, fuzzy C-means clustering and Rotation Forest (RF) are combined to construct a high performance classifier for imbalanced data classification. Data samples are clustered via fuzzy clustering and then fuzzy membership function matrix is added into data samples. Therefore, clusters memberships of samples are utilized as new features that are added into the original features. After that, RF is utilized for classification where the new set of features as well as the original ones are taken into account in the feature subspacing phase. The proposed algorithm utilizes SMOTE oversampling algorithm for balancing data samples. The obtained results confirm that our proposed method outperforms the other well-known bagging algorithms.\",\"PeriodicalId\":405857,\"journal\":{\"name\":\"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AISP.2015.7123535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP.2015.7123535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文将模糊c均值聚类与旋转森林(RF)相结合,构建了一种用于不平衡数据分类的高性能分类器。通过模糊聚类对数据样本进行聚类,然后在数据样本中加入模糊隶属函数矩阵。因此,样本的聚类隶属度被用作添加到原始特征中的新特征。然后利用RF进行分类,在特征子间距阶段既考虑了新特征集,也考虑了原始特征集。该算法利用SMOTE过采样算法来平衡数据样本。得到的结果证实了我们提出的方法优于其他已知的装袋算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving rotation forest performance for imbalanced data classification through fuzzy clustering
In this paper, fuzzy C-means clustering and Rotation Forest (RF) are combined to construct a high performance classifier for imbalanced data classification. Data samples are clustered via fuzzy clustering and then fuzzy membership function matrix is added into data samples. Therefore, clusters memberships of samples are utilized as new features that are added into the original features. After that, RF is utilized for classification where the new set of features as well as the original ones are taken into account in the feature subspacing phase. The proposed algorithm utilizes SMOTE oversampling algorithm for balancing data samples. The obtained results confirm that our proposed method outperforms the other well-known bagging algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信