DARA:带有特征构建的数据总结

R. Alfred
{"title":"DARA:带有特征构建的数据总结","authors":"R. Alfred","doi":"10.1109/AMS.2008.131","DOIUrl":null,"url":null,"abstract":"This paper addresses the question whether or not the descriptive accuracy of the DARA (Dynamic Aggregation of Relational Attributes) algorithm benefits from the feature construction process. This involves solving the problem of constructing a set of relevant features used to generate patterns representing records in the TF-IDF weighted frequency matrix in order to cluster these records. In this paper, feature construction will be applied to enhance the results of the data summarisation approach in learning data stored in multiple tables with high cardinality of one-to-many relations. It is expected that the predictive accuracy of a classfication problem can be improved by improving the descriptive accuracy of the data summarisation approach, provided that the summarised data is fed into the target table as one of the features considered in the classification task.","PeriodicalId":122964,"journal":{"name":"2008 Second Asia International Conference on Modelling & Simulation (AMS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"DARA: Data Summarisation with Feature Construction\",\"authors\":\"R. Alfred\",\"doi\":\"10.1109/AMS.2008.131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the question whether or not the descriptive accuracy of the DARA (Dynamic Aggregation of Relational Attributes) algorithm benefits from the feature construction process. This involves solving the problem of constructing a set of relevant features used to generate patterns representing records in the TF-IDF weighted frequency matrix in order to cluster these records. In this paper, feature construction will be applied to enhance the results of the data summarisation approach in learning data stored in multiple tables with high cardinality of one-to-many relations. It is expected that the predictive accuracy of a classfication problem can be improved by improving the descriptive accuracy of the data summarisation approach, provided that the summarised data is fed into the target table as one of the features considered in the classification task.\",\"PeriodicalId\":122964,\"journal\":{\"name\":\"2008 Second Asia International Conference on Modelling & Simulation (AMS)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Second Asia International Conference on Modelling & Simulation (AMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMS.2008.131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second Asia International Conference on Modelling & Simulation (AMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2008.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文讨论了特征构建过程是否有利于关系属性动态聚合(DARA)算法的描述准确性。这涉及到解决构造一组相关特征的问题,这些特征用于生成表示TF-IDF加权频率矩阵中的记录的模式,以便对这些记录进行聚类。在本文中,将应用特征构建来增强数据汇总方法在学习存储在一对多关系高基数的多个表中的数据时的结果。期望通过改进数据汇总方法的描述准确性来提高分类问题的预测准确性,前提是将汇总数据作为分类任务中考虑的特征之一馈送到目标表中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DARA: Data Summarisation with Feature Construction
This paper addresses the question whether or not the descriptive accuracy of the DARA (Dynamic Aggregation of Relational Attributes) algorithm benefits from the feature construction process. This involves solving the problem of constructing a set of relevant features used to generate patterns representing records in the TF-IDF weighted frequency matrix in order to cluster these records. In this paper, feature construction will be applied to enhance the results of the data summarisation approach in learning data stored in multiple tables with high cardinality of one-to-many relations. It is expected that the predictive accuracy of a classfication problem can be improved by improving the descriptive accuracy of the data summarisation approach, provided that the summarised data is fed into the target table as one of the features considered in the classification task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信