基于同义词增强的双向LSTM假新闻检测方法

Ghinadya, S. Suyanto
{"title":"基于同义词增强的双向LSTM假新闻检测方法","authors":"Ghinadya, S. Suyanto","doi":"10.1109/ICoICT49345.2020.9166230","DOIUrl":null,"url":null,"abstract":"Fake news is the news which contains propaganda and not relevant to the actual news. Today, the news in social media are troubling internet user. Hence, a fake news detector is needed to solve the problem. In this research, a fake news detector system based on Recurrent Neural Network (RNN) is developed. The architecture is designed using Bidirectional Long Short-Term Memories (Bi-LSTM) with exploit stance detection for the headline and the body of the news. Evaluation on 50 k news articles from FNC-1 shows that the proposed method produces F1-score of 0.2423 in detecting the fake news.","PeriodicalId":113108,"journal":{"name":"2020 8th International Conference on Information and Communication Technology (ICoICT)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Synonyms-Based Augmentation to Improve Fake News Detection using Bidirectional LSTM\",\"authors\":\"Ghinadya, S. Suyanto\",\"doi\":\"10.1109/ICoICT49345.2020.9166230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fake news is the news which contains propaganda and not relevant to the actual news. Today, the news in social media are troubling internet user. Hence, a fake news detector is needed to solve the problem. In this research, a fake news detector system based on Recurrent Neural Network (RNN) is developed. The architecture is designed using Bidirectional Long Short-Term Memories (Bi-LSTM) with exploit stance detection for the headline and the body of the news. Evaluation on 50 k news articles from FNC-1 shows that the proposed method produces F1-score of 0.2423 in detecting the fake news.\",\"PeriodicalId\":113108,\"journal\":{\"name\":\"2020 8th International Conference on Information and Communication Technology (ICoICT)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 8th International Conference on Information and Communication Technology (ICoICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICoICT49345.2020.9166230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th International Conference on Information and Communication Technology (ICoICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoICT49345.2020.9166230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

假新闻是包含宣传内容的新闻,与实际新闻无关。今天,社交媒体上的新闻让互联网用户感到不安。因此,需要一个假新闻检测器来解决这个问题。本文研究了一种基于递归神经网络(RNN)的假新闻检测系统。该架构采用双向长短期记忆(Bi-LSTM)设计,并利用新闻标题和正文的姿态检测。对来自FNC-1的50 k篇新闻文章的评估表明,该方法在检测假新闻方面的f1得分为0.2423。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synonyms-Based Augmentation to Improve Fake News Detection using Bidirectional LSTM
Fake news is the news which contains propaganda and not relevant to the actual news. Today, the news in social media are troubling internet user. Hence, a fake news detector is needed to solve the problem. In this research, a fake news detector system based on Recurrent Neural Network (RNN) is developed. The architecture is designed using Bidirectional Long Short-Term Memories (Bi-LSTM) with exploit stance detection for the headline and the body of the news. Evaluation on 50 k news articles from FNC-1 shows that the proposed method produces F1-score of 0.2423 in detecting the fake news.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信