利用深度学习从胸部x光片确定小鼠性别

A. Ajiboye, K. Babalola
{"title":"利用深度学习从胸部x光片确定小鼠性别","authors":"A. Ajiboye, K. Babalola","doi":"10.1109/CYBERNIGERIA51635.2021.9428822","DOIUrl":null,"url":null,"abstract":"This Following on from work by Babalola et al. It is shown that the sex of mice can be determined from x-ray images of the chest region alone using convolutional neural networks. The anatomical differences that may be responsible for this is further sinvestigated, as it may be useful in determining phenotype changes caused by knocking out genes - hence in understanding genotype-phenotype effects. Our results indicate that the cervical vertebrae may play an important role in the ability of our convolutional neural network to classify the sex of mice correctly using only x-rays of the chest region.","PeriodicalId":208301,"journal":{"name":"2020 IEEE 2nd International Conference on Cyberspac (CYBER NIGERIA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining Mice Sex from Chest X-rays using Deep Learning\",\"authors\":\"A. Ajiboye, K. Babalola\",\"doi\":\"10.1109/CYBERNIGERIA51635.2021.9428822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This Following on from work by Babalola et al. It is shown that the sex of mice can be determined from x-ray images of the chest region alone using convolutional neural networks. The anatomical differences that may be responsible for this is further sinvestigated, as it may be useful in determining phenotype changes caused by knocking out genes - hence in understanding genotype-phenotype effects. Our results indicate that the cervical vertebrae may play an important role in the ability of our convolutional neural network to classify the sex of mice correctly using only x-rays of the chest region.\",\"PeriodicalId\":208301,\"journal\":{\"name\":\"2020 IEEE 2nd International Conference on Cyberspac (CYBER NIGERIA)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 2nd International Conference on Cyberspac (CYBER NIGERIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBERNIGERIA51635.2021.9428822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 2nd International Conference on Cyberspac (CYBER NIGERIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERNIGERIA51635.2021.9428822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这是Babalola等人的研究成果。研究表明,仅使用卷积神经网络就可以从胸部区域的x射线图像确定小鼠的性别。解剖上的差异可能会导致这种情况的进一步研究,因为它可能有助于确定基因敲除引起的表型变化,从而理解基因型-表型效应。我们的研究结果表明,颈椎可能在我们的卷积神经网络中发挥重要作用,仅使用胸部区域的x射线就可以正确地对小鼠进行性别分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determining Mice Sex from Chest X-rays using Deep Learning
This Following on from work by Babalola et al. It is shown that the sex of mice can be determined from x-ray images of the chest region alone using convolutional neural networks. The anatomical differences that may be responsible for this is further sinvestigated, as it may be useful in determining phenotype changes caused by knocking out genes - hence in understanding genotype-phenotype effects. Our results indicate that the cervical vertebrae may play an important role in the ability of our convolutional neural network to classify the sex of mice correctly using only x-rays of the chest region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信