基于重要抽样和卷积神经网络的电力系统可靠性综合评估

Dogan Urgun, C. Singh
{"title":"基于重要抽样和卷积神经网络的电力系统可靠性综合评估","authors":"Dogan Urgun, C. Singh","doi":"10.1109/ISAP48318.2019.9065985","DOIUrl":null,"url":null,"abstract":"This paper proposes a new approach for evaluation of power systems reliability using Monte Carlo Simulation. Using standard Monte Carlo Simulation, a composite of Convolutional Neural Networks (CNN) and Importance Sampling (IS) is proposed for computing power system reliability indices. It is shown that the computational efficiency can be dramatically increased if the machine learning techniques are used in conjunction with well-known variance reduction technique of importance sampling. The IEEE Reliability Test System (IEEE-RTS) is used for studying the proposed method. The results of case studies show that CNNs together with importance sampling provide a good classification accuracy while reducing computation time substantially.","PeriodicalId":316020,"journal":{"name":"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)","volume":"494 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Composite Power System Reliability Evaluation Using Importance Sampling and Convolutional Neural Networks\",\"authors\":\"Dogan Urgun, C. Singh\",\"doi\":\"10.1109/ISAP48318.2019.9065985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new approach for evaluation of power systems reliability using Monte Carlo Simulation. Using standard Monte Carlo Simulation, a composite of Convolutional Neural Networks (CNN) and Importance Sampling (IS) is proposed for computing power system reliability indices. It is shown that the computational efficiency can be dramatically increased if the machine learning techniques are used in conjunction with well-known variance reduction technique of importance sampling. The IEEE Reliability Test System (IEEE-RTS) is used for studying the proposed method. The results of case studies show that CNNs together with importance sampling provide a good classification accuracy while reducing computation time substantially.\",\"PeriodicalId\":316020,\"journal\":{\"name\":\"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)\",\"volume\":\"494 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP48318.2019.9065985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP48318.2019.9065985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于蒙特卡罗仿真的电力系统可靠性评估新方法。利用标准蒙特卡罗模拟,提出了一种卷积神经网络(CNN)和重要性抽样(IS)的组合方法来计算电力系统可靠性指标。研究表明,如果将机器学习技术与著名的重要抽样方差缩减技术结合使用,计算效率可以显著提高。采用IEEE可靠性测试系统(IEEE- rts)对该方法进行了研究。实例研究结果表明,cnn与重要性采样相结合,在显著减少计算时间的同时,提供了良好的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Composite Power System Reliability Evaluation Using Importance Sampling and Convolutional Neural Networks
This paper proposes a new approach for evaluation of power systems reliability using Monte Carlo Simulation. Using standard Monte Carlo Simulation, a composite of Convolutional Neural Networks (CNN) and Importance Sampling (IS) is proposed for computing power system reliability indices. It is shown that the computational efficiency can be dramatically increased if the machine learning techniques are used in conjunction with well-known variance reduction technique of importance sampling. The IEEE Reliability Test System (IEEE-RTS) is used for studying the proposed method. The results of case studies show that CNNs together with importance sampling provide a good classification accuracy while reducing computation time substantially.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信