基于隐马尔可夫模型的几何不变形状分类

Chi-Man Pun, Cong Lin
{"title":"基于隐马尔可夫模型的几何不变形状分类","authors":"Chi-Man Pun, Cong Lin","doi":"10.1109/DICTA.2010.75","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel approach for geometric shape classification by using shape simplification and discrete Hidden Markov Model (HMM). The HMM is constructed using the landmark points obtained from the shape simplification for each shape image in the dataset. Some useful strategies have been employed for the constructed HMM for geometric shape classification. Experimental results based on the common MPEG7 CE shapes database shows that our proposed method can achieve very good accuracy in different kinds of shapes.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Geometric Invariant Shape Classification Using Hidden Markov Model\",\"authors\":\"Chi-Man Pun, Cong Lin\",\"doi\":\"10.1109/DICTA.2010.75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a novel approach for geometric shape classification by using shape simplification and discrete Hidden Markov Model (HMM). The HMM is constructed using the landmark points obtained from the shape simplification for each shape image in the dataset. Some useful strategies have been employed for the constructed HMM for geometric shape classification. Experimental results based on the common MPEG7 CE shapes database shows that our proposed method can achieve very good accuracy in different kinds of shapes.\",\"PeriodicalId\":246460,\"journal\":{\"name\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2010.75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于形状简化和离散隐马尔可夫模型(HMM)的几何形状分类方法。HMM是利用数据集中每个形状图像的形状简化得到的地标点来构建的。在构造的隐马尔可夫模型中采用了一些有用的策略进行几何形状分类。基于MPEG7通用CE形状数据库的实验结果表明,该方法在不同形状下都能达到很好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric Invariant Shape Classification Using Hidden Markov Model
In this paper we propose a novel approach for geometric shape classification by using shape simplification and discrete Hidden Markov Model (HMM). The HMM is constructed using the landmark points obtained from the shape simplification for each shape image in the dataset. Some useful strategies have been employed for the constructed HMM for geometric shape classification. Experimental results based on the common MPEG7 CE shapes database shows that our proposed method can achieve very good accuracy in different kinds of shapes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信