FlowGrad:用梯度控制生成ode的输出

Xingchao Liu, Lemeng Wu, Shujian Zhang, Chengyue Gong, Wei Ping, Qiang Liu
{"title":"FlowGrad:用梯度控制生成ode的输出","authors":"Xingchao Liu, Lemeng Wu, Shujian Zhang, Chengyue Gong, Wei Ping, Qiang Liu","doi":"10.1109/CVPR52729.2023.02331","DOIUrl":null,"url":null,"abstract":"Generative modeling with ordinary differential equations (ODEs) has achieved fantastic results on a variety of applications. Yet, few works have focused on controlling the generated content of a pre-trained ODE-based generative model. In this paper, we propose to optimize the output of ODE models according to a guidance function to achieve controllable generation. We point out that, the gradients can be efficiently back-propagated from the output to any intermediate time steps on the ODE trajectory, by decomposing the back-propagation and computing vectorJacobian products. To further accelerate the computation of the back-propagation, we propose to use a non-uniform discretization to approximate the ODE trajectory, where we measure how straight the trajectory is and gather the straight parts into one discretization step. This allows us to save ∼ 90% of the back-propagation time with ignorable error. Our framework, named FlowGrad, outperforms the state-of-the-art baselines on text-guided image manipulation. Moreover, FlowGrad enables us to find global semantic directions in frozen ODE-based generative models that can be used to manipulate new images without extra optimization.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FlowGrad: Controlling the Output of Generative ODEs with Gradients\",\"authors\":\"Xingchao Liu, Lemeng Wu, Shujian Zhang, Chengyue Gong, Wei Ping, Qiang Liu\",\"doi\":\"10.1109/CVPR52729.2023.02331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative modeling with ordinary differential equations (ODEs) has achieved fantastic results on a variety of applications. Yet, few works have focused on controlling the generated content of a pre-trained ODE-based generative model. In this paper, we propose to optimize the output of ODE models according to a guidance function to achieve controllable generation. We point out that, the gradients can be efficiently back-propagated from the output to any intermediate time steps on the ODE trajectory, by decomposing the back-propagation and computing vectorJacobian products. To further accelerate the computation of the back-propagation, we propose to use a non-uniform discretization to approximate the ODE trajectory, where we measure how straight the trajectory is and gather the straight parts into one discretization step. This allows us to save ∼ 90% of the back-propagation time with ignorable error. Our framework, named FlowGrad, outperforms the state-of-the-art baselines on text-guided image manipulation. Moreover, FlowGrad enables us to find global semantic directions in frozen ODE-based generative models that can be used to manipulate new images without extra optimization.\",\"PeriodicalId\":376416,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52729.2023.02331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.02331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

用常微分方程(ode)生成建模在各种应用中取得了惊人的效果。然而,很少有作品关注于控制预训练的基于ode的生成模型的生成内容。在本文中,我们提出根据一个引导函数来优化ODE模型的输出,以实现可控生成。我们指出,通过分解反向传播和计算向量雅可比积,梯度可以有效地从输出反向传播到ODE轨迹上的任何中间时间步长。为了进一步加速反向传播的计算,我们建议使用非均匀离散化来近似ODE轨迹,其中我们测量轨迹的直线程度并将直线部分聚集到一个离散化步骤中。这使我们可以节省~ 90%的反向传播时间,误差可以忽略不计。我们的框架,名为FlowGrad,在文本引导图像处理方面优于最先进的基线。此外,FlowGrad使我们能够在冻结的基于ode的生成模型中找到全局语义方向,这些模型可用于处理新图像,而无需额外的优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FlowGrad: Controlling the Output of Generative ODEs with Gradients
Generative modeling with ordinary differential equations (ODEs) has achieved fantastic results on a variety of applications. Yet, few works have focused on controlling the generated content of a pre-trained ODE-based generative model. In this paper, we propose to optimize the output of ODE models according to a guidance function to achieve controllable generation. We point out that, the gradients can be efficiently back-propagated from the output to any intermediate time steps on the ODE trajectory, by decomposing the back-propagation and computing vectorJacobian products. To further accelerate the computation of the back-propagation, we propose to use a non-uniform discretization to approximate the ODE trajectory, where we measure how straight the trajectory is and gather the straight parts into one discretization step. This allows us to save ∼ 90% of the back-propagation time with ignorable error. Our framework, named FlowGrad, outperforms the state-of-the-art baselines on text-guided image manipulation. Moreover, FlowGrad enables us to find global semantic directions in frozen ODE-based generative models that can be used to manipulate new images without extra optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信