基于手指静脉和面部图像的多模型身份验证(MPAFFI)

B. E. Manjunathswamy, J. Thriveni, K. Venugopal, L. Patnaik
{"title":"基于手指静脉和面部图像的多模型身份验证(MPAFFI)","authors":"B. E. Manjunathswamy, J. Thriveni, K. Venugopal, L. Patnaik","doi":"10.1109/PDGC.2014.7030767","DOIUrl":null,"url":null,"abstract":"Biometric based identifications are widely adopted for personnel identification. The unimodal recognition systems currently suffer from noisy data, spoofing attacks, biometric sensor data quality and many more. Robust personnel recognition considering multimodal biometric traits can be achieved. This paper introduces the Multimodal Personnel Authentication using Finger vein and Face Images (MPAFFI) considering the Finger Vein and Face biometric traits. The use of Magnitude and Phase features obtained from Gabor Kernels is considered to define the biometric traits of personnel. The biometric feature space is reduced using Fischer Score and Linear Discriminate Analysis. Personnel recognition is achieved using the weighted K-nearest neighbor classifier. The experimental study presented in the paper considers the (Group of Machine Learning and Applications, Shandong University-Homologous Multimodal Traits) SDUMLA - HMT multimodal biometric dataset. The performance of the MPAFFI is compared with the existing recognition systems and the performance improvement is proved through the results obtained.","PeriodicalId":311953,"journal":{"name":"2014 International Conference on Parallel, Distributed and Grid Computing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Multi model Personal Authentication using Finger vein and Face Images (MPAFFI)\",\"authors\":\"B. E. Manjunathswamy, J. Thriveni, K. Venugopal, L. Patnaik\",\"doi\":\"10.1109/PDGC.2014.7030767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biometric based identifications are widely adopted for personnel identification. The unimodal recognition systems currently suffer from noisy data, spoofing attacks, biometric sensor data quality and many more. Robust personnel recognition considering multimodal biometric traits can be achieved. This paper introduces the Multimodal Personnel Authentication using Finger vein and Face Images (MPAFFI) considering the Finger Vein and Face biometric traits. The use of Magnitude and Phase features obtained from Gabor Kernels is considered to define the biometric traits of personnel. The biometric feature space is reduced using Fischer Score and Linear Discriminate Analysis. Personnel recognition is achieved using the weighted K-nearest neighbor classifier. The experimental study presented in the paper considers the (Group of Machine Learning and Applications, Shandong University-Homologous Multimodal Traits) SDUMLA - HMT multimodal biometric dataset. The performance of the MPAFFI is compared with the existing recognition systems and the performance improvement is proved through the results obtained.\",\"PeriodicalId\":311953,\"journal\":{\"name\":\"2014 International Conference on Parallel, Distributed and Grid Computing\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Parallel, Distributed and Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDGC.2014.7030767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Parallel, Distributed and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDGC.2014.7030767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

基于生物特征的身份识别被广泛应用于人员身份识别。单模识别系统目前受到噪声数据、欺骗攻击、生物识别传感器数据质量等诸多问题的困扰。可以实现考虑多模态生物特征的鲁棒人员识别。本文介绍了一种基于手指静脉和面部特征的多模态人员身份验证方法(MPAFFI)。利用从Gabor核中获得的幅度和相位特征来定义人员的生物特征。利用Fischer分数和线性判别分析对生物特征空间进行了缩减。使用加权k近邻分类器实现人员识别。本文的实验研究考虑了(山东大学机器学习与应用小组-同源多模态特征)SDUMLA - HMT多模态生物特征数据集。将MPAFFI的性能与现有的识别系统进行了比较,并通过得到的结果证明了其性能的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi model Personal Authentication using Finger vein and Face Images (MPAFFI)
Biometric based identifications are widely adopted for personnel identification. The unimodal recognition systems currently suffer from noisy data, spoofing attacks, biometric sensor data quality and many more. Robust personnel recognition considering multimodal biometric traits can be achieved. This paper introduces the Multimodal Personnel Authentication using Finger vein and Face Images (MPAFFI) considering the Finger Vein and Face biometric traits. The use of Magnitude and Phase features obtained from Gabor Kernels is considered to define the biometric traits of personnel. The biometric feature space is reduced using Fischer Score and Linear Discriminate Analysis. Personnel recognition is achieved using the weighted K-nearest neighbor classifier. The experimental study presented in the paper considers the (Group of Machine Learning and Applications, Shandong University-Homologous Multimodal Traits) SDUMLA - HMT multimodal biometric dataset. The performance of the MPAFFI is compared with the existing recognition systems and the performance improvement is proved through the results obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信