一种用于纠正双重错误和检测随机三重错误的系统(16,8)代码

R. Klein, M. Varanasi, L. Dunning
{"title":"一种用于纠正双重错误和检测随机三重错误的系统(16,8)代码","authors":"R. Klein, M. Varanasi, L. Dunning","doi":"10.1109/SECON.1996.510075","DOIUrl":null,"url":null,"abstract":"We examine several systematic (16,8) codes capable of double error correction (DEC) and triple adjacent error detection. In particular, we examine a linear version of the Nordstrom-Robinson (NR) code in the light of new findings by Hammons (see IEEE Trans. Inform. Theory, vol.40, p.301, 1994) and others, and compare it with the (16, 8) code by Gulliver and Bhargava (see EEE Trans. Comp, vol.42, no.1, p.109, 1993). The NR code is non-linear, and because of its lack of algebraic structure, does not lend itself easily to use in its original form. However, it is now known that the NR code is the binary image of the octacode, and the octacode is a linear code. As a result of these new insights, we show that the NR code can be used to correct double errors (DEC), and simultaneously detect triple random errors (TED). These results are compared to the Gulliver and Bhargava (16, 8) code and summarized. We show that the linear form of the NR code can be decoded efficiently.","PeriodicalId":338029,"journal":{"name":"Proceedings of SOUTHEASTCON '96","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A systematic (16, 8) code for correcting double errors, and detecting random triple errors\",\"authors\":\"R. Klein, M. Varanasi, L. Dunning\",\"doi\":\"10.1109/SECON.1996.510075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine several systematic (16,8) codes capable of double error correction (DEC) and triple adjacent error detection. In particular, we examine a linear version of the Nordstrom-Robinson (NR) code in the light of new findings by Hammons (see IEEE Trans. Inform. Theory, vol.40, p.301, 1994) and others, and compare it with the (16, 8) code by Gulliver and Bhargava (see EEE Trans. Comp, vol.42, no.1, p.109, 1993). The NR code is non-linear, and because of its lack of algebraic structure, does not lend itself easily to use in its original form. However, it is now known that the NR code is the binary image of the octacode, and the octacode is a linear code. As a result of these new insights, we show that the NR code can be used to correct double errors (DEC), and simultaneously detect triple random errors (TED). These results are compared to the Gulliver and Bhargava (16, 8) code and summarized. We show that the linear form of the NR code can be decoded efficiently.\",\"PeriodicalId\":338029,\"journal\":{\"name\":\"Proceedings of SOUTHEASTCON '96\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of SOUTHEASTCON '96\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.1996.510075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SOUTHEASTCON '96","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.1996.510075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们研究了几种能够双重纠错(DEC)和三重相邻错误检测的系统(16,8)码。特别地,根据哈蒙斯的新发现,我们研究了Nordstrom-Robinson (NR)码的线性版本(参见IEEE Trans。通知。《理论》,vol.40, p.301, 1994)等,并与Gulliver和Bhargava的(16,8)代码进行比较(见EEE Trans. 1994)。《比较》,第42卷,第2期。1,第109页,1993年)。NR代码是非线性的,并且由于其缺乏代数结构,不容易以其原始形式使用。但是,现在已知NR码是八字节码的二值图像,八字节码是线性码。由于这些新的见解,我们表明NR代码可以用来纠正双重错误(DEC),同时检测三重随机错误(TED)。将这些结果与Gulliver和Bhargava(16,8)代码进行比较并总结。我们证明了线性形式的NR码可以被有效地解码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A systematic (16, 8) code for correcting double errors, and detecting random triple errors
We examine several systematic (16,8) codes capable of double error correction (DEC) and triple adjacent error detection. In particular, we examine a linear version of the Nordstrom-Robinson (NR) code in the light of new findings by Hammons (see IEEE Trans. Inform. Theory, vol.40, p.301, 1994) and others, and compare it with the (16, 8) code by Gulliver and Bhargava (see EEE Trans. Comp, vol.42, no.1, p.109, 1993). The NR code is non-linear, and because of its lack of algebraic structure, does not lend itself easily to use in its original form. However, it is now known that the NR code is the binary image of the octacode, and the octacode is a linear code. As a result of these new insights, we show that the NR code can be used to correct double errors (DEC), and simultaneously detect triple random errors (TED). These results are compared to the Gulliver and Bhargava (16, 8) code and summarized. We show that the linear form of the NR code can be decoded efficiently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信