基于视觉变压器的视觉里程测量与注意监督

Chu-Chi Chiu, Hsuan-Kung Yang, Hao-Wei Chen, Yu-Wen Chen, Chun-Yi Lee
{"title":"基于视觉变压器的视觉里程测量与注意监督","authors":"Chu-Chi Chiu, Hsuan-Kung Yang, Hao-Wei Chen, Yu-Wen Chen, Chun-Yi Lee","doi":"10.23919/MVA57639.2023.10215538","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a Vision Transformer based visual odometry (VO), called ViTVO. ViTVO introduces an attention mechanism to perform visual odometry. Due to the nature of VO, Transformer based VO models tend to overconcentrate on few points, which may result in a degradation of accuracy. In addition, noises from dynamic objects usually cause difficulties in performing VO tasks. To overcome these issues, we propose an attention loss during training, which utilizes ground truth masks or self supervision to guide the attention maps to focus more on static regions of an image. In our experiments, we demonstrate the superior performance of ViTVO on the Sintel validation set, and validate the effectiveness of our attention supervision mechanism in performing VO tasks.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ViTVO: Vision Transformer based Visual Odometry with Attention Supervision\",\"authors\":\"Chu-Chi Chiu, Hsuan-Kung Yang, Hao-Wei Chen, Yu-Wen Chen, Chun-Yi Lee\",\"doi\":\"10.23919/MVA57639.2023.10215538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop a Vision Transformer based visual odometry (VO), called ViTVO. ViTVO introduces an attention mechanism to perform visual odometry. Due to the nature of VO, Transformer based VO models tend to overconcentrate on few points, which may result in a degradation of accuracy. In addition, noises from dynamic objects usually cause difficulties in performing VO tasks. To overcome these issues, we propose an attention loss during training, which utilizes ground truth masks or self supervision to guide the attention maps to focus more on static regions of an image. In our experiments, we demonstrate the superior performance of ViTVO on the Sintel validation set, and validate the effectiveness of our attention supervision mechanism in performing VO tasks.\",\"PeriodicalId\":338734,\"journal\":{\"name\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA57639.2023.10215538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10215538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们开发了一种基于视觉里程计的视觉变压器,称为ViTVO。ViTVO引入了一种注意力机制来执行视觉里程计。由于VO的性质,基于Transformer的VO模型往往会过度集中在几个点上,这可能会导致精度下降。此外,来自动态对象的噪声通常会给VO任务的执行带来困难。为了克服这些问题,我们提出了在训练期间的注意力损失,它利用地面真相面具或自我监督来引导注意力地图更多地关注图像的静态区域。在我们的实验中,我们证明了ViTVO在Sintel验证集上的优越性能,并验证了我们的注意力监督机制在执行VO任务中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ViTVO: Vision Transformer based Visual Odometry with Attention Supervision
In this paper, we develop a Vision Transformer based visual odometry (VO), called ViTVO. ViTVO introduces an attention mechanism to perform visual odometry. Due to the nature of VO, Transformer based VO models tend to overconcentrate on few points, which may result in a degradation of accuracy. In addition, noises from dynamic objects usually cause difficulties in performing VO tasks. To overcome these issues, we propose an attention loss during training, which utilizes ground truth masks or self supervision to guide the attention maps to focus more on static regions of an image. In our experiments, we demonstrate the superior performance of ViTVO on the Sintel validation set, and validate the effectiveness of our attention supervision mechanism in performing VO tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信