基于约束AdaBoost算法的复杂场景图像文本检测与定位

S. Hanif, L. Prevost
{"title":"基于约束AdaBoost算法的复杂场景图像文本检测与定位","authors":"S. Hanif, L. Prevost","doi":"10.1109/ICDAR.2009.172","DOIUrl":null,"url":null,"abstract":"We have proposed a complete system for text detection and localization in gray scale scene images. A boosting framework integrating feature and weak classifier selection based on computational complexity is proposed to construct efficient text detectors. The proposed scheme uses a small set of heterogeneous features which are spatially combined to build a large set of features. A neural network based localizer learns necessary rules for localization. The evaluation is done on the challenging ICDAR 2003 robust reading and text locating database. The results are encouraging and our system can localize text of various font sizes and styles in complex background.","PeriodicalId":433762,"journal":{"name":"2009 10th International Conference on Document Analysis and Recognition","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"125","resultStr":"{\"title\":\"Text Detection and Localization in Complex Scene Images using Constrained AdaBoost Algorithm\",\"authors\":\"S. Hanif, L. Prevost\",\"doi\":\"10.1109/ICDAR.2009.172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have proposed a complete system for text detection and localization in gray scale scene images. A boosting framework integrating feature and weak classifier selection based on computational complexity is proposed to construct efficient text detectors. The proposed scheme uses a small set of heterogeneous features which are spatially combined to build a large set of features. A neural network based localizer learns necessary rules for localization. The evaluation is done on the challenging ICDAR 2003 robust reading and text locating database. The results are encouraging and our system can localize text of various font sizes and styles in complex background.\",\"PeriodicalId\":433762,\"journal\":{\"name\":\"2009 10th International Conference on Document Analysis and Recognition\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"125\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 10th International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2009.172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2009.172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 125

摘要

我们提出了一套完整的灰度场景图像文本检测与定位系统。为了构建高效的文本检测器,提出了一种基于计算复杂度的特征和弱分类器选择相结合的增强框架。该方案利用小的异构特征集,将其在空间上组合成一个大的特征集。基于神经网络的定位器学习定位的必要规则。在具有挑战性的ICDAR 2003鲁棒阅读和文本定位数据库上进行了评估。结果令人鼓舞,我们的系统可以在复杂的背景下对各种字体大小和样式的文本进行本地化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text Detection and Localization in Complex Scene Images using Constrained AdaBoost Algorithm
We have proposed a complete system for text detection and localization in gray scale scene images. A boosting framework integrating feature and weak classifier selection based on computational complexity is proposed to construct efficient text detectors. The proposed scheme uses a small set of heterogeneous features which are spatially combined to build a large set of features. A neural network based localizer learns necessary rules for localization. The evaluation is done on the challenging ICDAR 2003 robust reading and text locating database. The results are encouraging and our system can localize text of various font sizes and styles in complex background.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信