{"title":"半拟齐次奇异点和标准基下参数局部上同类的有效计算算法","authors":"Katsusuke Nabeshima, S. Tajima","doi":"10.1145/2608628.2608639","DOIUrl":null,"url":null,"abstract":"A new algorithm is given for computing parametric local cohomology classes associated with semi-quasihomogeneous singularities. The essential point of the proposed algorithm involves Poincaré polynomials and weighted degrees. The proposed algorithm gives a suitable decomposition of the parameter space depending on the structure of the parametric local cohomology classes. As an application, an algorithm for computing parametric standard bases of zero-dimensional ideals, is given. These algorithms work for non-parametric cases, too.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"On efficient algorithms for computing parametric local cohomology classes associated with semi-quasihomogeneous singularities and standard bases\",\"authors\":\"Katsusuke Nabeshima, S. Tajima\",\"doi\":\"10.1145/2608628.2608639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new algorithm is given for computing parametric local cohomology classes associated with semi-quasihomogeneous singularities. The essential point of the proposed algorithm involves Poincaré polynomials and weighted degrees. The proposed algorithm gives a suitable decomposition of the parameter space depending on the structure of the parametric local cohomology classes. As an application, an algorithm for computing parametric standard bases of zero-dimensional ideals, is given. These algorithms work for non-parametric cases, too.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2608628.2608639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On efficient algorithms for computing parametric local cohomology classes associated with semi-quasihomogeneous singularities and standard bases
A new algorithm is given for computing parametric local cohomology classes associated with semi-quasihomogeneous singularities. The essential point of the proposed algorithm involves Poincaré polynomials and weighted degrees. The proposed algorithm gives a suitable decomposition of the parameter space depending on the structure of the parametric local cohomology classes. As an application, an algorithm for computing parametric standard bases of zero-dimensional ideals, is given. These algorithms work for non-parametric cases, too.