Wenqi Shi, L. Tong, Yuchen Zhuang, Yuanda Zhu, May D. Wang
{"title":"基于注意力的COVID-19自动诊断模型","authors":"Wenqi Shi, L. Tong, Yuchen Zhuang, Yuanda Zhu, May D. Wang","doi":"10.1145/3388440.3412455","DOIUrl":null,"url":null,"abstract":"The ongoing coronavirus disease 2019 (COVID-19) is still rapidly spreading and has caused over 7,000,000 infection cases and 400,000 deaths around the world. To come up with a fast and reliable COVID-19 diagnosis system, people seek help from machine learning area to establish computer-aided diagnosis systems with the aid of the radiological imaging techniques, like X-ray imaging and computed tomography imaging. Although artificial intelligence based architectures have achieved great improvements in performance, most of the models are still seemed as a black box to researchers. In this paper, we propose an Explainable Attention-based Model (EXAM) for COVID-19 automatic diagnosis with convincing visual interpretation. We transform the diagnosis process with radiological images into an image classification problem differentiating COVID-19, normal and community-acquired pneumonia (CAP) cases. Combining channel-wise and spatial-wise attention mechanism, the proposed approach can effectively extract key features and suppress irrelevant information. Experiment results and visualization indicate that EXAM outperforms recent state-of-art models and demonstrate its interpretability.","PeriodicalId":411338,"journal":{"name":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"EXAM: An Explainable Attention-based Model for COVID-19 Automatic Diagnosis\",\"authors\":\"Wenqi Shi, L. Tong, Yuchen Zhuang, Yuanda Zhu, May D. Wang\",\"doi\":\"10.1145/3388440.3412455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ongoing coronavirus disease 2019 (COVID-19) is still rapidly spreading and has caused over 7,000,000 infection cases and 400,000 deaths around the world. To come up with a fast and reliable COVID-19 diagnosis system, people seek help from machine learning area to establish computer-aided diagnosis systems with the aid of the radiological imaging techniques, like X-ray imaging and computed tomography imaging. Although artificial intelligence based architectures have achieved great improvements in performance, most of the models are still seemed as a black box to researchers. In this paper, we propose an Explainable Attention-based Model (EXAM) for COVID-19 automatic diagnosis with convincing visual interpretation. We transform the diagnosis process with radiological images into an image classification problem differentiating COVID-19, normal and community-acquired pneumonia (CAP) cases. Combining channel-wise and spatial-wise attention mechanism, the proposed approach can effectively extract key features and suppress irrelevant information. Experiment results and visualization indicate that EXAM outperforms recent state-of-art models and demonstrate its interpretability.\",\"PeriodicalId\":411338,\"journal\":{\"name\":\"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3388440.3412455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3388440.3412455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EXAM: An Explainable Attention-based Model for COVID-19 Automatic Diagnosis
The ongoing coronavirus disease 2019 (COVID-19) is still rapidly spreading and has caused over 7,000,000 infection cases and 400,000 deaths around the world. To come up with a fast and reliable COVID-19 diagnosis system, people seek help from machine learning area to establish computer-aided diagnosis systems with the aid of the radiological imaging techniques, like X-ray imaging and computed tomography imaging. Although artificial intelligence based architectures have achieved great improvements in performance, most of the models are still seemed as a black box to researchers. In this paper, we propose an Explainable Attention-based Model (EXAM) for COVID-19 automatic diagnosis with convincing visual interpretation. We transform the diagnosis process with radiological images into an image classification problem differentiating COVID-19, normal and community-acquired pneumonia (CAP) cases. Combining channel-wise and spatial-wise attention mechanism, the proposed approach can effectively extract key features and suppress irrelevant information. Experiment results and visualization indicate that EXAM outperforms recent state-of-art models and demonstrate its interpretability.