近似k近邻分类的快速密度估计

Takao Kobayashi, I. Shimizu
{"title":"近似k近邻分类的快速密度估计","authors":"Takao Kobayashi, I. Shimizu","doi":"10.1109/ICFHR.2010.60","DOIUrl":null,"url":null,"abstract":"We propose a method for fast density estimation of samples, which makes it possible to significantly accelerate classification based on the k nearest neighbor (kNN) method. Our main premise is that many trials of a rough estimation of probability density function are conducted, and they are integrated by Bayes’ theorem. The experimental results indicated that the classification time used in our method was at least 30 times faster than that of kNN.","PeriodicalId":335044,"journal":{"name":"2010 12th International Conference on Frontiers in Handwriting Recognition","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Density Estimation for Approximated k Nearest Neighbor Classification\",\"authors\":\"Takao Kobayashi, I. Shimizu\",\"doi\":\"10.1109/ICFHR.2010.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method for fast density estimation of samples, which makes it possible to significantly accelerate classification based on the k nearest neighbor (kNN) method. Our main premise is that many trials of a rough estimation of probability density function are conducted, and they are integrated by Bayes’ theorem. The experimental results indicated that the classification time used in our method was at least 30 times faster than that of kNN.\",\"PeriodicalId\":335044,\"journal\":{\"name\":\"2010 12th International Conference on Frontiers in Handwriting Recognition\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 12th International Conference on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFHR.2010.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2010.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种快速样本密度估计方法,使得基于k近邻(kNN)方法的分类速度显著加快。我们的主要前提是对概率密度函数的粗略估计进行了多次试验,并通过贝叶斯定理进行了积分。实验结果表明,该方法的分类时间比kNN方法快至少30倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Density Estimation for Approximated k Nearest Neighbor Classification
We propose a method for fast density estimation of samples, which makes it possible to significantly accelerate classification based on the k nearest neighbor (kNN) method. Our main premise is that many trials of a rough estimation of probability density function are conducted, and they are integrated by Bayes’ theorem. The experimental results indicated that the classification time used in our method was at least 30 times faster than that of kNN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信