基于张量分解的位置社交网络POI推荐

Guoqiong Liao, Shan Jiang, Zhiheng Zhou, Changxuan Wan, X. Liu
{"title":"基于张量分解的位置社交网络POI推荐","authors":"Guoqiong Liao, Shan Jiang, Zhiheng Zhou, Changxuan Wan, X. Liu","doi":"10.1109/MDM.2018.00028","DOIUrl":null,"url":null,"abstract":"With the rapid development of wireless communication technologies, location-based social networks (LBSNs) like foursquare and Gowalla have become very popular. Point of interest (POI) recommendation is a kind of important recommendation in LBSNs for enhancing user experiences. Unlike online social networks, LBSNs have a great deal of check-in data and comment information, which can provide valuable information for POI recommendation. In this paper, a novel recommendation strategy using tensor factorization is proposed for improving accurate rate of POI recommendation. Firstly, the latent dirichlet allocation(LDA) topic model is used to extract topic information and generate topic probability distribution of each POI based on comment information from users. Secondly, the check-in data of each user is divided into multiple data slices corresponding to each hour of a day. By connecting with the topic distributions of the visited POIs of each user, a user-topic-time tensor is conducted to present the potential preferences of all users. Finally, a higher order singular value decomposition (HOSVD) algorithm is employed to decompose the third-order tensor, to get dense preference information for POI recommendation. The experiments on a real dataset show that the proposed approach have better performance than the baseline methods.","PeriodicalId":205319,"journal":{"name":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"POI Recommendation of Location-Based Social Networks Using Tensor Factorization\",\"authors\":\"Guoqiong Liao, Shan Jiang, Zhiheng Zhou, Changxuan Wan, X. Liu\",\"doi\":\"10.1109/MDM.2018.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of wireless communication technologies, location-based social networks (LBSNs) like foursquare and Gowalla have become very popular. Point of interest (POI) recommendation is a kind of important recommendation in LBSNs for enhancing user experiences. Unlike online social networks, LBSNs have a great deal of check-in data and comment information, which can provide valuable information for POI recommendation. In this paper, a novel recommendation strategy using tensor factorization is proposed for improving accurate rate of POI recommendation. Firstly, the latent dirichlet allocation(LDA) topic model is used to extract topic information and generate topic probability distribution of each POI based on comment information from users. Secondly, the check-in data of each user is divided into multiple data slices corresponding to each hour of a day. By connecting with the topic distributions of the visited POIs of each user, a user-topic-time tensor is conducted to present the potential preferences of all users. Finally, a higher order singular value decomposition (HOSVD) algorithm is employed to decompose the third-order tensor, to get dense preference information for POI recommendation. The experiments on a real dataset show that the proposed approach have better performance than the baseline methods.\",\"PeriodicalId\":205319,\"journal\":{\"name\":\"2018 19th IEEE International Conference on Mobile Data Management (MDM)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 19th IEEE International Conference on Mobile Data Management (MDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MDM.2018.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2018.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

随着无线通信技术的快速发展,foursquare和Gowalla等基于位置的社交网络(LBSNs)变得非常流行。兴趣点推荐是LBSNs中增强用户体验的一种重要推荐方式。与在线社交网络不同,LBSNs拥有大量的签到数据和评论信息,可以为POI推荐提供有价值的信息。为了提高POI推荐的准确率,本文提出了一种基于张量分解的推荐策略。首先,利用潜在狄利克雷分配(latent dirichlet allocation, LDA)主题模型提取主题信息,并根据用户的评论信息生成各POI的主题概率分布;其次,将每个用户的签到数据按照一天中的每个小时划分为多个数据片。通过连接每个用户访问过的poi的主题分布,构造一个user-topic-time张量来表示所有用户的潜在偏好。最后,采用高阶奇异值分解(HOSVD)算法对三阶张量进行分解,得到密集的偏好信息,用于POI推荐。在实际数据集上的实验表明,该方法比基线方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
POI Recommendation of Location-Based Social Networks Using Tensor Factorization
With the rapid development of wireless communication technologies, location-based social networks (LBSNs) like foursquare and Gowalla have become very popular. Point of interest (POI) recommendation is a kind of important recommendation in LBSNs for enhancing user experiences. Unlike online social networks, LBSNs have a great deal of check-in data and comment information, which can provide valuable information for POI recommendation. In this paper, a novel recommendation strategy using tensor factorization is proposed for improving accurate rate of POI recommendation. Firstly, the latent dirichlet allocation(LDA) topic model is used to extract topic information and generate topic probability distribution of each POI based on comment information from users. Secondly, the check-in data of each user is divided into multiple data slices corresponding to each hour of a day. By connecting with the topic distributions of the visited POIs of each user, a user-topic-time tensor is conducted to present the potential preferences of all users. Finally, a higher order singular value decomposition (HOSVD) algorithm is employed to decompose the third-order tensor, to get dense preference information for POI recommendation. The experiments on a real dataset show that the proposed approach have better performance than the baseline methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信