基于机器学习的数控机床自动诊断模型生成方法

K. Masalimov
{"title":"基于机器学习的数控机床自动诊断模型生成方法","authors":"K. Masalimov","doi":"10.1145/3324884.3418915","DOIUrl":null,"url":null,"abstract":"This article presents a description of a system for the automatic generation of predictive diagnostic models of CNC machine tools. This system allows machine tool maintenance specialists to select and operate models based on LSTM neural networks to determine the state of elements of CNC machines. Examples of changes in the accuracy of the models used during operation are given to determine the state of the cutting tool (more than 95%) and the bearings of electric motors (more than 91%).","PeriodicalId":106337,"journal":{"name":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Machine Learning based Approach to Autogenerate Diagnostic Models for CNC machines\",\"authors\":\"K. Masalimov\",\"doi\":\"10.1145/3324884.3418915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a description of a system for the automatic generation of predictive diagnostic models of CNC machine tools. This system allows machine tool maintenance specialists to select and operate models based on LSTM neural networks to determine the state of elements of CNC machines. Examples of changes in the accuracy of the models used during operation are given to determine the state of the cutting tool (more than 95%) and the bearings of electric motors (more than 91%).\",\"PeriodicalId\":106337,\"journal\":{\"name\":\"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3324884.3418915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3418915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种用于数控机床预测诊断模型自动生成的系统。该系统允许机床维护专家基于LSTM神经网络选择和操作模型,以确定数控机床元件的状态。给出了在操作过程中使用的模型精度变化的例子,以确定刀具的状态(超过95%)和电动机的轴承(超过91%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Machine Learning based Approach to Autogenerate Diagnostic Models for CNC machines
This article presents a description of a system for the automatic generation of predictive diagnostic models of CNC machine tools. This system allows machine tool maintenance specialists to select and operate models based on LSTM neural networks to determine the state of elements of CNC machines. Examples of changes in the accuracy of the models used during operation are given to determine the state of the cutting tool (more than 95%) and the bearings of electric motors (more than 91%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信