Guy Golan-Gueta, Edward Bortnikov, Eshcar Hillel, I. Keidar
{"title":"扩展并发日志结构数据存储","authors":"Guy Golan-Gueta, Edward Bortnikov, Eshcar Hillel, I. Keidar","doi":"10.1145/2741948.2741973","DOIUrl":null,"url":null,"abstract":"Log-structured data stores (LSM-DSs) are widely accepted as the state-of-the-art implementation of key-value stores. They replace random disk writes with sequential I/O, by accumulating large batches of updates in an in-memory data structure and merging it with the on-disk store in the background. While LSM-DS implementations proved to be highly successful at masking the I/O bottleneck, scaling them up on multicore CPUs remains a challenge. This is nontrivial due to their often rich APIs, as well as the need to coordinate the RAM access with the background I/O. We present cLSM, an algorithm for scalable concurrency in LSM-DS, which exploits multiprocessor-friendly data structures and non-blocking synchronization. cLSM supports a rich API, including consistent snapshot scans and general non-blocking read-modify-write operations. We implement cLSM based on the popular LevelDB key-value store, and evaluate it using intensive synthetic workloads as well as ones from production web-serving applications. Our algorithm outperforms state of the art LSM-DS implementations, improving throughput by 1.5x to 2.5x. Moreover, cLSM demonstrates superior scalability with the number of cores (successfully exploiting twice as many cores as the competition).","PeriodicalId":119291,"journal":{"name":"Proceedings of the Tenth European Conference on Computer Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":"{\"title\":\"Scaling concurrent log-structured data stores\",\"authors\":\"Guy Golan-Gueta, Edward Bortnikov, Eshcar Hillel, I. Keidar\",\"doi\":\"10.1145/2741948.2741973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Log-structured data stores (LSM-DSs) are widely accepted as the state-of-the-art implementation of key-value stores. They replace random disk writes with sequential I/O, by accumulating large batches of updates in an in-memory data structure and merging it with the on-disk store in the background. While LSM-DS implementations proved to be highly successful at masking the I/O bottleneck, scaling them up on multicore CPUs remains a challenge. This is nontrivial due to their often rich APIs, as well as the need to coordinate the RAM access with the background I/O. We present cLSM, an algorithm for scalable concurrency in LSM-DS, which exploits multiprocessor-friendly data structures and non-blocking synchronization. cLSM supports a rich API, including consistent snapshot scans and general non-blocking read-modify-write operations. We implement cLSM based on the popular LevelDB key-value store, and evaluate it using intensive synthetic workloads as well as ones from production web-serving applications. Our algorithm outperforms state of the art LSM-DS implementations, improving throughput by 1.5x to 2.5x. Moreover, cLSM demonstrates superior scalability with the number of cores (successfully exploiting twice as many cores as the competition).\",\"PeriodicalId\":119291,\"journal\":{\"name\":\"Proceedings of the Tenth European Conference on Computer Systems\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"96\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Tenth European Conference on Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2741948.2741973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2741948.2741973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Log-structured data stores (LSM-DSs) are widely accepted as the state-of-the-art implementation of key-value stores. They replace random disk writes with sequential I/O, by accumulating large batches of updates in an in-memory data structure and merging it with the on-disk store in the background. While LSM-DS implementations proved to be highly successful at masking the I/O bottleneck, scaling them up on multicore CPUs remains a challenge. This is nontrivial due to their often rich APIs, as well as the need to coordinate the RAM access with the background I/O. We present cLSM, an algorithm for scalable concurrency in LSM-DS, which exploits multiprocessor-friendly data structures and non-blocking synchronization. cLSM supports a rich API, including consistent snapshot scans and general non-blocking read-modify-write operations. We implement cLSM based on the popular LevelDB key-value store, and evaluate it using intensive synthetic workloads as well as ones from production web-serving applications. Our algorithm outperforms state of the art LSM-DS implementations, improving throughput by 1.5x to 2.5x. Moreover, cLSM demonstrates superior scalability with the number of cores (successfully exploiting twice as many cores as the competition).