避免陷入局部最优的单纯形粒子群优化策略

V. Steffen
{"title":"避免陷入局部最优的单纯形粒子群优化策略","authors":"V. Steffen","doi":"10.5772/acrt.11","DOIUrl":null,"url":null,"abstract":"Heuristic methods, for global optimization, have been receiving much interest in the last years, among which Particle Swarm Optimization (PSO) algorithm can be highlighted. However, the application of heuristic methods can lead to premature convergence. In this work, the addition of a step on the PSO algorithm is proposed. This new step, based in Nelder–Mead simplex search method (NM), consists of repositioning the current particle with global best solution, not for a better position, but away from the current nearest local optimum, to avoid getting stuck on this local optimum. There are other PSO-NM algorithms, but the one we are proposing, has a different strategy. The proposed algorithm was also tested with the repositioning strategy in other particles beyond the current global best particle, depending on the repositioning probability. To evaluate the effectiveness of the proposed methods, and study its better parameters, were used various test functions, and for each test function, various number of particles were used in combination with various probabilities of particles repositioning. A thousand runs were performed for each case, resulting in more than two millions runs. The computational studies showed that the repositioning of of global best particle increases the percentage of success on reaching the global best solution, but better results can be obtained applying the repositioning strategy to other particles with repositioning probabilities between 1–5%.","PeriodicalId":431659,"journal":{"name":"AI, Computer Science and Robotics Technology","volume":"380 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Particle Swarm Optimization with a Simplex Strategy to Avoid Getting Stuck on Local Optimum\",\"authors\":\"V. Steffen\",\"doi\":\"10.5772/acrt.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heuristic methods, for global optimization, have been receiving much interest in the last years, among which Particle Swarm Optimization (PSO) algorithm can be highlighted. However, the application of heuristic methods can lead to premature convergence. In this work, the addition of a step on the PSO algorithm is proposed. This new step, based in Nelder–Mead simplex search method (NM), consists of repositioning the current particle with global best solution, not for a better position, but away from the current nearest local optimum, to avoid getting stuck on this local optimum. There are other PSO-NM algorithms, but the one we are proposing, has a different strategy. The proposed algorithm was also tested with the repositioning strategy in other particles beyond the current global best particle, depending on the repositioning probability. To evaluate the effectiveness of the proposed methods, and study its better parameters, were used various test functions, and for each test function, various number of particles were used in combination with various probabilities of particles repositioning. A thousand runs were performed for each case, resulting in more than two millions runs. The computational studies showed that the repositioning of of global best particle increases the percentage of success on reaching the global best solution, but better results can be obtained applying the repositioning strategy to other particles with repositioning probabilities between 1–5%.\",\"PeriodicalId\":431659,\"journal\":{\"name\":\"AI, Computer Science and Robotics Technology\",\"volume\":\"380 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI, Computer Science and Robotics Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/acrt.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI, Computer Science and Robotics Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/acrt.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

启发式全局优化方法近年来受到广泛关注,其中粒子群优化算法(PSO)尤为突出。然而,启发式方法的应用可能导致过早收敛。本文提出在粒子群算法的基础上增加一个步骤。这一新步骤,基于Nelder-Mead单纯形搜索法(NM),包括用全局最优解重新定位当前粒子,不是为了更好的位置,而是远离当前最近的局部最优,以避免被卡在这个局部最优上。还有其他的PSO-NM算法,但我们提出的这个,有一个不同的策略。根据重新定位的概率,在当前全局最优粒子之外的其他粒子上进行了重新定位策略的测试。为了评价所提方法的有效性,并研究其较优参数,我们使用了不同的测试函数,对于每个测试函数,我们使用了不同数量的粒子,并结合不同的粒子重定位概率。每种情况都进行了1000次运行,总共运行了200多万次。计算研究表明,对全局最优粒子进行重定位可以提高全局最优解的成功率,但对重定位概率在1 ~ 5%之间的其他粒子进行重定位可以获得更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle Swarm Optimization with a Simplex Strategy to Avoid Getting Stuck on Local Optimum
Heuristic methods, for global optimization, have been receiving much interest in the last years, among which Particle Swarm Optimization (PSO) algorithm can be highlighted. However, the application of heuristic methods can lead to premature convergence. In this work, the addition of a step on the PSO algorithm is proposed. This new step, based in Nelder–Mead simplex search method (NM), consists of repositioning the current particle with global best solution, not for a better position, but away from the current nearest local optimum, to avoid getting stuck on this local optimum. There are other PSO-NM algorithms, but the one we are proposing, has a different strategy. The proposed algorithm was also tested with the repositioning strategy in other particles beyond the current global best particle, depending on the repositioning probability. To evaluate the effectiveness of the proposed methods, and study its better parameters, were used various test functions, and for each test function, various number of particles were used in combination with various probabilities of particles repositioning. A thousand runs were performed for each case, resulting in more than two millions runs. The computational studies showed that the repositioning of of global best particle increases the percentage of success on reaching the global best solution, but better results can be obtained applying the repositioning strategy to other particles with repositioning probabilities between 1–5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信