基于卷积神经网络的数字图像隐写分析子系统的开发,以检测和防止使用隐写通道的攻击

E. Yandashevskaya
{"title":"基于卷积神经网络的数字图像隐写分析子系统的开发,以检测和防止使用隐写通道的攻击","authors":"E. Yandashevskaya","doi":"10.21293/1818-0442-2021-24-2-29-33","DOIUrl":null,"url":null,"abstract":"This article presents a way to implement the subsystem for steganalysis of digital images circulating in the information system. This subsystem expands the functionality of existing intrusion detection / prevention systems in terms of detecting covert channels used in computer attacks. In the presented solution, a parametric model of a convolutional neural network is proposed and implemented to detect a payload in digital images, performed by a number of steg-nesting algorithms recognized in real attacks. A software implementation of a modular generator of a training sample (dataset) that supports these algorithms has been developed. An experimental assessment of the accuracy has been carried out","PeriodicalId":273068,"journal":{"name":"Proceedings of Tomsk State University of Control Systems and Radioelectronics","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Subsystem for Steganalysis of Digital Images Based on a Convolutional Neural Network to Detect and Prevent Attacks Using Hidden Steganographic Channels\",\"authors\":\"E. Yandashevskaya\",\"doi\":\"10.21293/1818-0442-2021-24-2-29-33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a way to implement the subsystem for steganalysis of digital images circulating in the information system. This subsystem expands the functionality of existing intrusion detection / prevention systems in terms of detecting covert channels used in computer attacks. In the presented solution, a parametric model of a convolutional neural network is proposed and implemented to detect a payload in digital images, performed by a number of steg-nesting algorithms recognized in real attacks. A software implementation of a modular generator of a training sample (dataset) that supports these algorithms has been developed. An experimental assessment of the accuracy has been carried out\",\"PeriodicalId\":273068,\"journal\":{\"name\":\"Proceedings of Tomsk State University of Control Systems and Radioelectronics\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Tomsk State University of Control Systems and Radioelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21293/1818-0442-2021-24-2-29-33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Tomsk State University of Control Systems and Radioelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21293/1818-0442-2021-24-2-29-33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种实现信息系统中数字图像隐写分析子系统的方法。该子系统在检测计算机攻击中使用的隐蔽通道方面扩展了现有入侵检测/防御系统的功能。在提出的解决方案中,提出并实现了卷积神经网络的参数模型来检测数字图像中的有效载荷,该模型由许多在真实攻击中识别的steg嵌套算法执行。已经开发了一个支持这些算法的训练样本(数据集)的模块化生成器的软件实现。对其精度进行了实验评估
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a Subsystem for Steganalysis of Digital Images Based on a Convolutional Neural Network to Detect and Prevent Attacks Using Hidden Steganographic Channels
This article presents a way to implement the subsystem for steganalysis of digital images circulating in the information system. This subsystem expands the functionality of existing intrusion detection / prevention systems in terms of detecting covert channels used in computer attacks. In the presented solution, a parametric model of a convolutional neural network is proposed and implemented to detect a payload in digital images, performed by a number of steg-nesting algorithms recognized in real attacks. A software implementation of a modular generator of a training sample (dataset) that supports these algorithms has been developed. An experimental assessment of the accuracy has been carried out
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信