CEC 2017约束实参数优化的自适应约束处理与成功历史差分演化

A. Zamuda
{"title":"CEC 2017约束实参数优化的自适应约束处理与成功历史差分演化","authors":"A. Zamuda","doi":"10.1109/CEC.2017.7969601","DOIUrl":null,"url":null,"abstract":"This paper presents Success-History Based Adaptive Differential Evolution Algorithm (SHADE) including Linear population size reduction (L-SHADE), enhanced with adaptive constraint violation handling, applied to the benchmark for CEC 2017 Competition on Constrained Real-Parameter Optimization. The constraint handling method prioritizes the feasible solutions before infeasible, while disregarding the constraint violation values below an adaptive threshold, i.e. adaptive ϵ-constraint handling. The 28 constrained test functions on 10, 30, 50, and 100 dimensions are assessed on the benchmark and the required resulting final fitnesses, constraints violations, and success rates are reported for 25 independent runs of the proposed algorithm under the budget of fixed maximum number of fitness evaluations for 10, 30, 50, and 100 dimensional test functions.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Adaptive constraint handling and Success History Differential Evolution for CEC 2017 Constrained Real-Parameter Optimization\",\"authors\":\"A. Zamuda\",\"doi\":\"10.1109/CEC.2017.7969601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents Success-History Based Adaptive Differential Evolution Algorithm (SHADE) including Linear population size reduction (L-SHADE), enhanced with adaptive constraint violation handling, applied to the benchmark for CEC 2017 Competition on Constrained Real-Parameter Optimization. The constraint handling method prioritizes the feasible solutions before infeasible, while disregarding the constraint violation values below an adaptive threshold, i.e. adaptive ϵ-constraint handling. The 28 constrained test functions on 10, 30, 50, and 100 dimensions are assessed on the benchmark and the required resulting final fitnesses, constraints violations, and success rates are reported for 25 independent runs of the proposed algorithm under the budget of fixed maximum number of fitness evaluations for 10, 30, 50, and 100 dimensional test functions.\",\"PeriodicalId\":335123,\"journal\":{\"name\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2017.7969601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

本文提出了基于成功历史的自适应差分进化算法(SHADE),该算法包括线性种群大小缩减(L-SHADE),增强了自适应约束违规处理,并应用于CEC 2017约束实参数优化竞赛基准。约束处理方法优先考虑可行解,而忽略低于自适应阈值的约束违例值,即自适应ϵ-constraint处理。在基准上评估10、30、50和100个维度上的28个约束测试函数,并在10、30、50和100个维度测试函数的固定最大适应度评估次数的预算下,报告所提出算法的25个独立运行所需的最终适应度、约束违规和成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive constraint handling and Success History Differential Evolution for CEC 2017 Constrained Real-Parameter Optimization
This paper presents Success-History Based Adaptive Differential Evolution Algorithm (SHADE) including Linear population size reduction (L-SHADE), enhanced with adaptive constraint violation handling, applied to the benchmark for CEC 2017 Competition on Constrained Real-Parameter Optimization. The constraint handling method prioritizes the feasible solutions before infeasible, while disregarding the constraint violation values below an adaptive threshold, i.e. adaptive ϵ-constraint handling. The 28 constrained test functions on 10, 30, 50, and 100 dimensions are assessed on the benchmark and the required resulting final fitnesses, constraints violations, and success rates are reported for 25 independent runs of the proposed algorithm under the budget of fixed maximum number of fitness evaluations for 10, 30, 50, and 100 dimensional test functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信