{"title":"执行时间变化下分布式系统在线资源管理器的稳定性","authors":"Sergiu Rafiliu, P. Eles, Zebo Peng, M. Lemmon","doi":"10.1145/2629495","DOIUrl":null,"url":null,"abstract":"Today's embedded systems are exposed to variations in resource usage due to complex software applications, hardware platforms, and impact of the runtime environments. When these variations are large and efficiency is required, on-line resource managers may be deployed on the system to help it control its resource usage. An often neglected problem is whether these resource managers are stable, meaning that the resource usage is controlled under all possible scenarios. In distributed systems, this problem is particularly hard because applications distributed over many resources generate complex dependencies between their resources. In this article, we develop a mathematical model of the system, and derive conditions that, if satisfied, guarantee stability.","PeriodicalId":183677,"journal":{"name":"ACM Trans. Embed. Comput. Syst.","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stability of Online Resource Managers for Distributed Systems under Execution Time Variations\",\"authors\":\"Sergiu Rafiliu, P. Eles, Zebo Peng, M. Lemmon\",\"doi\":\"10.1145/2629495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today's embedded systems are exposed to variations in resource usage due to complex software applications, hardware platforms, and impact of the runtime environments. When these variations are large and efficiency is required, on-line resource managers may be deployed on the system to help it control its resource usage. An often neglected problem is whether these resource managers are stable, meaning that the resource usage is controlled under all possible scenarios. In distributed systems, this problem is particularly hard because applications distributed over many resources generate complex dependencies between their resources. In this article, we develop a mathematical model of the system, and derive conditions that, if satisfied, guarantee stability.\",\"PeriodicalId\":183677,\"journal\":{\"name\":\"ACM Trans. Embed. Comput. Syst.\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Embed. Comput. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2629495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Embed. Comput. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2629495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stability of Online Resource Managers for Distributed Systems under Execution Time Variations
Today's embedded systems are exposed to variations in resource usage due to complex software applications, hardware platforms, and impact of the runtime environments. When these variations are large and efficiency is required, on-line resource managers may be deployed on the system to help it control its resource usage. An often neglected problem is whether these resource managers are stable, meaning that the resource usage is controlled under all possible scenarios. In distributed systems, this problem is particularly hard because applications distributed over many resources generate complex dependencies between their resources. In this article, we develop a mathematical model of the system, and derive conditions that, if satisfied, guarantee stability.