基于多马尔可夫模型的BGP数据异常检测

Judith D. Gardiner
{"title":"基于多马尔可夫模型的BGP数据异常检测","authors":"Judith D. Gardiner","doi":"10.1109/HPCMP-UGC.2009.61","DOIUrl":null,"url":null,"abstract":"This project explores a new mechanism for early detection of Internet disturbances, including both natural and malicious events. We used multiple hidden Markov models to analyze a type of global routing data called Border Gateway Protocol (BGP). Reasonably good discrimination was achieved between quiet periods and disturbances, and some discrimination was achieved between natural and malicious events. This project was exploratory in nature; no validation has been done on the results.","PeriodicalId":268639,"journal":{"name":"2009 DoD High Performance Computing Modernization Program Users Group Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multiple Markov Models for Detecting Internet Anomalies from BGP Data\",\"authors\":\"Judith D. Gardiner\",\"doi\":\"10.1109/HPCMP-UGC.2009.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This project explores a new mechanism for early detection of Internet disturbances, including both natural and malicious events. We used multiple hidden Markov models to analyze a type of global routing data called Border Gateway Protocol (BGP). Reasonably good discrimination was achieved between quiet periods and disturbances, and some discrimination was achieved between natural and malicious events. This project was exploratory in nature; no validation has been done on the results.\",\"PeriodicalId\":268639,\"journal\":{\"name\":\"2009 DoD High Performance Computing Modernization Program Users Group Conference\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 DoD High Performance Computing Modernization Program Users Group Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCMP-UGC.2009.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 DoD High Performance Computing Modernization Program Users Group Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCMP-UGC.2009.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

该项目探索了一种早期检测互联网干扰的新机制,包括自然和恶意事件。我们使用多个隐马尔可夫模型来分析一种称为边界网关协议(BGP)的全局路由数据。在平静期和干扰期之间实现了相当好的区分,在自然事件和恶意事件之间实现了一定的区分。这个项目本质上是探索性的;没有对结果进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple Markov Models for Detecting Internet Anomalies from BGP Data
This project explores a new mechanism for early detection of Internet disturbances, including both natural and malicious events. We used multiple hidden Markov models to analyze a type of global routing data called Border Gateway Protocol (BGP). Reasonably good discrimination was achieved between quiet periods and disturbances, and some discrimination was achieved between natural and malicious events. This project was exploratory in nature; no validation has been done on the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信