Tim Zhang, A. Amirsoleimani, J. Eshraghian, M. Azghadi, R. Genov, Yu Xia
{"title":"SSCAE:用于sc- rna序列降维的神经形态SNN自编码器","authors":"Tim Zhang, A. Amirsoleimani, J. Eshraghian, M. Azghadi, R. Genov, Yu Xia","doi":"10.1109/ISCAS46773.2023.10181994","DOIUrl":null,"url":null,"abstract":"Single-cell RNA sequencing is an emerging technique in the field of biology that departs radically from the previous assumption of gene-expression homogeneity within a tissue. The large quantity of data generated by this technology enables discoveries of cellular biology and disease mechanics that were previously not possible, and calls for accurate, scalable, and efficient processing pipelines. In this work, we propose SSCAE (spiking single-cell autoencoder), a novel SNN-based autoencoder for sc-RNA-seq dimensionality reduction. We apply this architecture to a variety of datasets, and the results show that it can match and surpass the performance of current state-of-the-art techniques. Moreover, the potential of this technique lies in its ability to be scaled up and to take advantage of neuromorphic hardware, circumventing the memory bottleneck that currently limits the size of sequencing datasets that can be processed.","PeriodicalId":177320,"journal":{"name":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SSCAE: A Neuromorphic SNN Autoencoder for sc-RNA-seq Dimensionality Reduction\",\"authors\":\"Tim Zhang, A. Amirsoleimani, J. Eshraghian, M. Azghadi, R. Genov, Yu Xia\",\"doi\":\"10.1109/ISCAS46773.2023.10181994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-cell RNA sequencing is an emerging technique in the field of biology that departs radically from the previous assumption of gene-expression homogeneity within a tissue. The large quantity of data generated by this technology enables discoveries of cellular biology and disease mechanics that were previously not possible, and calls for accurate, scalable, and efficient processing pipelines. In this work, we propose SSCAE (spiking single-cell autoencoder), a novel SNN-based autoencoder for sc-RNA-seq dimensionality reduction. We apply this architecture to a variety of datasets, and the results show that it can match and surpass the performance of current state-of-the-art techniques. Moreover, the potential of this technique lies in its ability to be scaled up and to take advantage of neuromorphic hardware, circumventing the memory bottleneck that currently limits the size of sequencing datasets that can be processed.\",\"PeriodicalId\":177320,\"journal\":{\"name\":\"2023 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS46773.2023.10181994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS46773.2023.10181994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SSCAE: A Neuromorphic SNN Autoencoder for sc-RNA-seq Dimensionality Reduction
Single-cell RNA sequencing is an emerging technique in the field of biology that departs radically from the previous assumption of gene-expression homogeneity within a tissue. The large quantity of data generated by this technology enables discoveries of cellular biology and disease mechanics that were previously not possible, and calls for accurate, scalable, and efficient processing pipelines. In this work, we propose SSCAE (spiking single-cell autoencoder), a novel SNN-based autoencoder for sc-RNA-seq dimensionality reduction. We apply this architecture to a variety of datasets, and the results show that it can match and surpass the performance of current state-of-the-art techniques. Moreover, the potential of this technique lies in its ability to be scaled up and to take advantage of neuromorphic hardware, circumventing the memory bottleneck that currently limits the size of sequencing datasets that can be processed.