逻辑神经网络的学习算法

W. Penny, T. Stonham
{"title":"逻辑神经网络的学习算法","authors":"W. Penny, T. Stonham","doi":"10.1109/ICSYSE.1990.203235","DOIUrl":null,"url":null,"abstract":"Two training methods for multilayer logical neural networks are presented and discussed. They are the probabilistic logic node (PLN) reward-penalty algorithm of I. Aleksander (1989) and the PLN backpropagation algorithm of R. Al-Alawi and T. J. Stonham (1989). They are considered within the paradigm of reward-penalty training algorithms for analog networks and are found to be capable of solving various hard learning problems in speeds which are orders of magnitude higher than error backpropagation techniques for conventional nodes","PeriodicalId":259801,"journal":{"name":"1990 IEEE International Conference on Systems Engineering","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning algorithms for logical neural networks\",\"authors\":\"W. Penny, T. Stonham\",\"doi\":\"10.1109/ICSYSE.1990.203235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two training methods for multilayer logical neural networks are presented and discussed. They are the probabilistic logic node (PLN) reward-penalty algorithm of I. Aleksander (1989) and the PLN backpropagation algorithm of R. Al-Alawi and T. J. Stonham (1989). They are considered within the paradigm of reward-penalty training algorithms for analog networks and are found to be capable of solving various hard learning problems in speeds which are orders of magnitude higher than error backpropagation techniques for conventional nodes\",\"PeriodicalId\":259801,\"journal\":{\"name\":\"1990 IEEE International Conference on Systems Engineering\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1990 IEEE International Conference on Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSYSE.1990.203235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1990 IEEE International Conference on Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSYSE.1990.203235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出并讨论了两种多层逻辑神经网络的训练方法。它们是I. Aleksander(1989)的概率逻辑节点(PLN)奖罚算法和R. Al-Alawi和T. J. Stonham(1989)的PLN反向传播算法。它们被认为是模拟网络奖罚训练算法的范例,并且被发现能够以比传统节点的误差反向传播技术高几个数量级的速度解决各种困难的学习问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning algorithms for logical neural networks
Two training methods for multilayer logical neural networks are presented and discussed. They are the probabilistic logic node (PLN) reward-penalty algorithm of I. Aleksander (1989) and the PLN backpropagation algorithm of R. Al-Alawi and T. J. Stonham (1989). They are considered within the paradigm of reward-penalty training algorithms for analog networks and are found to be capable of solving various hard learning problems in speeds which are orders of magnitude higher than error backpropagation techniques for conventional nodes
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信