巴西海岸气象海洋变量评估的地质统计学方法

Diogo J. Amore, M. Kampel, R. Frouin
{"title":"巴西海岸气象海洋变量评估的地质统计学方法","authors":"Diogo J. Amore, M. Kampel, R. Frouin","doi":"10.1117/12.2500574","DOIUrl":null,"url":null,"abstract":"MODIS chlorophyll-a concentration (chla), sea surface temperature (SST), and photosynthetically active radiation (PAR) were used to perform a geographically weighted regression (GWR) analysis within a 150-km buffer of the Brazilian coast. The correlation was between chla as the regressed variable and SST or PAR as the predictors. Both a GWR and a Bayesian GWR (BGWR) were used for evaluating the variables. Colored matrices were plotted for displaying beta values, significance, residuals, and t-statistics. Coefficients of determination (R2) were computed for all months. Also, the ratio of the GWR beta estimates and the 95% confidence interval BGWR estimates was computed. Results showed overall better R2 for SST than for PAR regression but also better beta estimates for PAR than for SST in relation to BGWR beta significance range. Northern regions of the Brazilian coast exhibited lower statistical significance. July had lowest GWR beta values and best significance, January highest beta values and worst significance, and April and October highly variable results.","PeriodicalId":370971,"journal":{"name":"Asia-Pacific Remote Sensing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geostatistical approach for meteo-oceanographic variables evaluation at the Brazilian coast\",\"authors\":\"Diogo J. Amore, M. Kampel, R. Frouin\",\"doi\":\"10.1117/12.2500574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MODIS chlorophyll-a concentration (chla), sea surface temperature (SST), and photosynthetically active radiation (PAR) were used to perform a geographically weighted regression (GWR) analysis within a 150-km buffer of the Brazilian coast. The correlation was between chla as the regressed variable and SST or PAR as the predictors. Both a GWR and a Bayesian GWR (BGWR) were used for evaluating the variables. Colored matrices were plotted for displaying beta values, significance, residuals, and t-statistics. Coefficients of determination (R2) were computed for all months. Also, the ratio of the GWR beta estimates and the 95% confidence interval BGWR estimates was computed. Results showed overall better R2 for SST than for PAR regression but also better beta estimates for PAR than for SST in relation to BGWR beta significance range. Northern regions of the Brazilian coast exhibited lower statistical significance. July had lowest GWR beta values and best significance, January highest beta values and worst significance, and April and October highly variable results.\",\"PeriodicalId\":370971,\"journal\":{\"name\":\"Asia-Pacific Remote Sensing\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2500574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2500574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用MODIS叶绿素-a浓度(chla)、海表温度(SST)和光合有效辐射(PAR)对巴西海岸150公里缓冲带进行了地理加权回归(GWR)分析。回归变量chla与预测因子SST或PAR之间存在相关性。同时使用GWR和贝叶斯GWR (BGWR)来评估变量。绘制彩色矩阵以显示beta值、显著性、残差和t统计量。计算各月份的决定系数(R2)。此外,还计算了GWR β估计和95%置信区间BGWR估计的比率。结果显示,总体而言,海温的R2优于PAR回归,但在BGWR β显著性范围内,PAR的β估计也优于海温。巴西海岸北部地区的统计显著性较低。7月GWR beta值最低,显著性最佳;1月beta值最高,显著性最差;4月和10月结果变化较大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geostatistical approach for meteo-oceanographic variables evaluation at the Brazilian coast
MODIS chlorophyll-a concentration (chla), sea surface temperature (SST), and photosynthetically active radiation (PAR) were used to perform a geographically weighted regression (GWR) analysis within a 150-km buffer of the Brazilian coast. The correlation was between chla as the regressed variable and SST or PAR as the predictors. Both a GWR and a Bayesian GWR (BGWR) were used for evaluating the variables. Colored matrices were plotted for displaying beta values, significance, residuals, and t-statistics. Coefficients of determination (R2) were computed for all months. Also, the ratio of the GWR beta estimates and the 95% confidence interval BGWR estimates was computed. Results showed overall better R2 for SST than for PAR regression but also better beta estimates for PAR than for SST in relation to BGWR beta significance range. Northern regions of the Brazilian coast exhibited lower statistical significance. July had lowest GWR beta values and best significance, January highest beta values and worst significance, and April and October highly variable results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信