协同感知系统的车辆间目标关联

A. Rauch, Stefan Maier, F. Klanner, K. Dietmayer
{"title":"协同感知系统的车辆间目标关联","authors":"A. Rauch, Stefan Maier, F. Klanner, K. Dietmayer","doi":"10.1109/ITSC.2013.6728345","DOIUrl":null,"url":null,"abstract":"In cooperative perception systems, different vehicles share object data obtained by their local environment perception sensors, like radar or lidar, via wireless communication. Inaccurate self-localizations of the vehicles complicate association of locally perceived objects and objects detected and transmitted by other vehicles. In this paper, a method for inter-vehicle object association is presented. Position and orientation offsets between object lists from different vehicles are estimated by applying point matching algorithms. Different algorithms are analyzed in simulations concerning their robustness and performance. Results with a first implementation of the so-called Auction-ICP algorithm in a real test vehicle validate the simulation results.","PeriodicalId":275768,"journal":{"name":"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Inter-vehicle object association for cooperative perception systems\",\"authors\":\"A. Rauch, Stefan Maier, F. Klanner, K. Dietmayer\",\"doi\":\"10.1109/ITSC.2013.6728345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In cooperative perception systems, different vehicles share object data obtained by their local environment perception sensors, like radar or lidar, via wireless communication. Inaccurate self-localizations of the vehicles complicate association of locally perceived objects and objects detected and transmitted by other vehicles. In this paper, a method for inter-vehicle object association is presented. Position and orientation offsets between object lists from different vehicles are estimated by applying point matching algorithms. Different algorithms are analyzed in simulations concerning their robustness and performance. Results with a first implementation of the so-called Auction-ICP algorithm in a real test vehicle validate the simulation results.\",\"PeriodicalId\":275768,\"journal\":{\"name\":\"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2013.6728345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2013.6728345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

在协同感知系统中,不同车辆通过无线通信共享其本地环境感知传感器(如雷达或激光雷达)获得的目标数据。车辆不准确的自我定位会使局部感知到的物体与其他车辆检测和传输的物体之间的关联变得复杂。本文提出了一种车辆间目标关联方法。采用点匹配算法估计不同车辆目标列表之间的位置和方向偏移。通过仿真分析了不同算法的鲁棒性和性能。首次在真实测试车辆上实施所谓的拍卖- icp算法的结果验证了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inter-vehicle object association for cooperative perception systems
In cooperative perception systems, different vehicles share object data obtained by their local environment perception sensors, like radar or lidar, via wireless communication. Inaccurate self-localizations of the vehicles complicate association of locally perceived objects and objects detected and transmitted by other vehicles. In this paper, a method for inter-vehicle object association is presented. Position and orientation offsets between object lists from different vehicles are estimated by applying point matching algorithms. Different algorithms are analyzed in simulations concerning their robustness and performance. Results with a first implementation of the so-called Auction-ICP algorithm in a real test vehicle validate the simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信