{"title":"使用纹理信息库的无参考图像质量评估","authors":"P. Freitas, W. Y. L. Akamine, Mylène C. Q. Farias","doi":"10.1109/BRACIS.2016.033","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new no-reference quality assessment method which uses a machine learning technique based on texture analysis. The proposed method compares test images with texture images of a public database. Local Binary Patterns (LBPs) are used as local texture feature descriptors. With a Csiszár-Morimoto divergence measure, the histograms of the LBPs of the test images are compared with the histograms of the LBPs of the database texture images, generating a set of difference measures. These difference measures are used to blindly predict the quality of an image. Experimental results show that the proposed method is fast and has a good quality prediction power, outperforming other no-reference image quality assessment methods.","PeriodicalId":183149,"journal":{"name":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"No-Reference Image Quality Assessment Using Texture Information Banks\",\"authors\":\"P. Freitas, W. Y. L. Akamine, Mylène C. Q. Farias\",\"doi\":\"10.1109/BRACIS.2016.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new no-reference quality assessment method which uses a machine learning technique based on texture analysis. The proposed method compares test images with texture images of a public database. Local Binary Patterns (LBPs) are used as local texture feature descriptors. With a Csiszár-Morimoto divergence measure, the histograms of the LBPs of the test images are compared with the histograms of the LBPs of the database texture images, generating a set of difference measures. These difference measures are used to blindly predict the quality of an image. Experimental results show that the proposed method is fast and has a good quality prediction power, outperforming other no-reference image quality assessment methods.\",\"PeriodicalId\":183149,\"journal\":{\"name\":\"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2016.033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2016.033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
No-Reference Image Quality Assessment Using Texture Information Banks
In this paper, we propose a new no-reference quality assessment method which uses a machine learning technique based on texture analysis. The proposed method compares test images with texture images of a public database. Local Binary Patterns (LBPs) are used as local texture feature descriptors. With a Csiszár-Morimoto divergence measure, the histograms of the LBPs of the test images are compared with the histograms of the LBPs of the database texture images, generating a set of difference measures. These difference measures are used to blindly predict the quality of an image. Experimental results show that the proposed method is fast and has a good quality prediction power, outperforming other no-reference image quality assessment methods.