{"title":"可靠驱动GaN器件的挑战","authors":"Paul Brohlin","doi":"10.23919/ISPSD.2017.7988874","DOIUrl":null,"url":null,"abstract":"GaN's properties of low Coss, Crss, and lack of reverse recovery make it a more efficient power switch versus silicon. These characteristics enable higher-frequency hard-switched topologies such as totem-pole bridgeless power factor converter (PFC) that cannot be realized by silicon MOSFETs and insulated-gate bipolar transistors (IGBTs) due to their high switching losses. To take advantages of these properties, GaN must be switched quickly and reliably. This paper examines requirements for the driver, package, and the GaN HEMT to enable efficient and reliable switching.","PeriodicalId":202561,"journal":{"name":"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Challenges in reliably driving GaN devices\",\"authors\":\"Paul Brohlin\",\"doi\":\"10.23919/ISPSD.2017.7988874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GaN's properties of low Coss, Crss, and lack of reverse recovery make it a more efficient power switch versus silicon. These characteristics enable higher-frequency hard-switched topologies such as totem-pole bridgeless power factor converter (PFC) that cannot be realized by silicon MOSFETs and insulated-gate bipolar transistors (IGBTs) due to their high switching losses. To take advantages of these properties, GaN must be switched quickly and reliably. This paper examines requirements for the driver, package, and the GaN HEMT to enable efficient and reliable switching.\",\"PeriodicalId\":202561,\"journal\":{\"name\":\"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ISPSD.2017.7988874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ISPSD.2017.7988874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GaN's properties of low Coss, Crss, and lack of reverse recovery make it a more efficient power switch versus silicon. These characteristics enable higher-frequency hard-switched topologies such as totem-pole bridgeless power factor converter (PFC) that cannot be realized by silicon MOSFETs and insulated-gate bipolar transistors (IGBTs) due to their high switching losses. To take advantages of these properties, GaN must be switched quickly and reliably. This paper examines requirements for the driver, package, and the GaN HEMT to enable efficient and reliable switching.