双幂非线性Gross-Pitaevskii方程驻波的稳定性和不稳定性

Yue Zhang, Jian Zhang
{"title":"双幂非线性Gross-Pitaevskii方程驻波的稳定性和不稳定性","authors":"Yue Zhang, Jian Zhang","doi":"10.3934/mcrf.2022007","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we investigate Gross-Pitaevskii equations with double power nonlinearities. Firstly, due to the defocusing effect from the lower power order nonlinearity, Gross-Pitaevskii equations still have standing waves when the frequency <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\omega $\\end{document}</tex-math></inline-formula> is the negative of the first eigenvalue of the linear operator <inline-formula><tex-math id=\"M2\">\\begin{document}$ - \\Delta + \\gamma|x{|^2} $\\end{document}</tex-math></inline-formula>. The existence of this class of standing waves is proved by the variational method, especially the mountain pass lemma. Secondly, by establishing the relationship to the known standing waves of the classical nonlinear Schrödinger equations, we study the instability of standing waves for <inline-formula><tex-math id=\"M3\">\\begin{document}$ q \\ge 1 + 4/N $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\omega $\\end{document}</tex-math></inline-formula> sufficiently large. Finally, we use the variational argument to prove the stability of standing waves for <inline-formula><tex-math id=\"M5\">\\begin{document}$ q \\le 1 + 4/N $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":418020,"journal":{"name":"Mathematical Control &amp; Related Fields","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stability and instability of standing waves for Gross-Pitaevskii equations with double power nonlinearities\",\"authors\":\"Yue Zhang, Jian Zhang\",\"doi\":\"10.3934/mcrf.2022007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In this paper, we investigate Gross-Pitaevskii equations with double power nonlinearities. Firstly, due to the defocusing effect from the lower power order nonlinearity, Gross-Pitaevskii equations still have standing waves when the frequency <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ \\\\omega $\\\\end{document}</tex-math></inline-formula> is the negative of the first eigenvalue of the linear operator <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ - \\\\Delta + \\\\gamma|x{|^2} $\\\\end{document}</tex-math></inline-formula>. The existence of this class of standing waves is proved by the variational method, especially the mountain pass lemma. Secondly, by establishing the relationship to the known standing waves of the classical nonlinear Schrödinger equations, we study the instability of standing waves for <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ q \\\\ge 1 + 4/N $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\omega $\\\\end{document}</tex-math></inline-formula> sufficiently large. Finally, we use the variational argument to prove the stability of standing waves for <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ q \\\\le 1 + 4/N $\\\\end{document}</tex-math></inline-formula>.</p>\",\"PeriodicalId\":418020,\"journal\":{\"name\":\"Mathematical Control &amp; Related Fields\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Control &amp; Related Fields\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/mcrf.2022007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control &amp; Related Fields","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mcrf.2022007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

In this paper, we investigate Gross-Pitaevskii equations with double power nonlinearities. Firstly, due to the defocusing effect from the lower power order nonlinearity, Gross-Pitaevskii equations still have standing waves when the frequency \begin{document}$ \omega $\end{document} is the negative of the first eigenvalue of the linear operator \begin{document}$ - \Delta + \gamma|x{|^2} $\end{document}. The existence of this class of standing waves is proved by the variational method, especially the mountain pass lemma. Secondly, by establishing the relationship to the known standing waves of the classical nonlinear Schrödinger equations, we study the instability of standing waves for \begin{document}$ q \ge 1 + 4/N $\end{document} and \begin{document}$ \omega $\end{document} sufficiently large. Finally, we use the variational argument to prove the stability of standing waves for \begin{document}$ q \le 1 + 4/N $\end{document}.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and instability of standing waves for Gross-Pitaevskii equations with double power nonlinearities

In this paper, we investigate Gross-Pitaevskii equations with double power nonlinearities. Firstly, due to the defocusing effect from the lower power order nonlinearity, Gross-Pitaevskii equations still have standing waves when the frequency \begin{document}$ \omega $\end{document} is the negative of the first eigenvalue of the linear operator \begin{document}$ - \Delta + \gamma|x{|^2} $\end{document}. The existence of this class of standing waves is proved by the variational method, especially the mountain pass lemma. Secondly, by establishing the relationship to the known standing waves of the classical nonlinear Schrödinger equations, we study the instability of standing waves for \begin{document}$ q \ge 1 + 4/N $\end{document} and \begin{document}$ \omega $\end{document} sufficiently large. Finally, we use the variational argument to prove the stability of standing waves for \begin{document}$ q \le 1 + 4/N $\end{document}.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信