更安全&最安全:用于汽车soc在线老化监测的数据注释和预警的单老化因子增强环和阴影树

Cho-Sheng Lin, Jing Huang, Po-Sheng Chang, Chun-Yen Tsai, Tsung-Chu Huang
{"title":"更安全&最安全:用于汽车soc在线老化监测的数据注释和预警的单老化因子增强环和阴影树","authors":"Cho-Sheng Lin, Jing Huang, Po-Sheng Chang, Chun-Yen Tsai, Tsung-Chu Huang","doi":"10.1109/ICCE-TW52618.2021.9603149","DOIUrl":null,"url":null,"abstract":"AI techniques have been widely applied in consumer electronics, especially automotive advanced driver assistant systems. The reliability of the AI processors in the harsh environment is facing a critical challenge. In this paper we explore and exploit high correlation between single-aging-factor (SAF) enhanced oscillating rings (SAFERs) for online data annotation in early stage and SAF shadow trees (SAFESTs) for training and on-line aging monitoring later. Compared with previous work, 88% of accuracy for high correlation supervised classification will be more reliable than 99% of meaningless clustering.","PeriodicalId":141850,"journal":{"name":"2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAFER & SAFEST: Single-Aging-Factor Enhanced Rings and Shadow Trees for Data Annotation and Early Warning in Online Aging Monitors of Automotive SoCs\",\"authors\":\"Cho-Sheng Lin, Jing Huang, Po-Sheng Chang, Chun-Yen Tsai, Tsung-Chu Huang\",\"doi\":\"10.1109/ICCE-TW52618.2021.9603149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AI techniques have been widely applied in consumer electronics, especially automotive advanced driver assistant systems. The reliability of the AI processors in the harsh environment is facing a critical challenge. In this paper we explore and exploit high correlation between single-aging-factor (SAF) enhanced oscillating rings (SAFERs) for online data annotation in early stage and SAF shadow trees (SAFESTs) for training and on-line aging monitoring later. Compared with previous work, 88% of accuracy for high correlation supervised classification will be more reliable than 99% of meaningless clustering.\",\"PeriodicalId\":141850,\"journal\":{\"name\":\"2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-TW52618.2021.9603149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW52618.2021.9603149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能技术已广泛应用于消费类电子产品,尤其是汽车高级驾驶辅助系统。人工智能处理器在恶劣环境下的可靠性面临着严峻的挑战。本文探索并利用了早期用于在线数据标注的单老化因子(SAF)增强振荡环(SAFERs)与后期用于训练和在线老化监测的SAF阴影树(SAFESTs)之间的高度相关性。与以往的工作相比,88%的高相关性监督分类准确率将比99%的无意义聚类更可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAFER & SAFEST: Single-Aging-Factor Enhanced Rings and Shadow Trees for Data Annotation and Early Warning in Online Aging Monitors of Automotive SoCs
AI techniques have been widely applied in consumer electronics, especially automotive advanced driver assistant systems. The reliability of the AI processors in the harsh environment is facing a critical challenge. In this paper we explore and exploit high correlation between single-aging-factor (SAF) enhanced oscillating rings (SAFERs) for online data annotation in early stage and SAF shadow trees (SAFESTs) for training and on-line aging monitoring later. Compared with previous work, 88% of accuracy for high correlation supervised classification will be more reliable than 99% of meaningless clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信