{"title":"离线草书手写识别的多分支和两次HMM建模方法","authors":"Wenwei Wang, A. Brakensiek, A. Kosmala, G. Rigoll","doi":"10.1109/ICDAR.2001.953789","DOIUrl":null,"url":null,"abstract":"Because of large shape variations in human handwriting, cursive handwriting recognition remains a challenging task. Usually, the recognition performance depends crucially upon the pre-processing steps, e.g. the word baseline detection and segmentation process. Hidden Markov models (HMMs) have the ability to model similarities and variations among samples of a class. In this paper, we present a multi-branch HMM modeling method and an HMM-based two-pass modeling approach. Whereas the multi-branch HMM method makes the resulting system more robust with word baseline detection, the two-pass recognition approach exploits the segmentation ability of the Viterbi algorithm and creates another HMM set and carries out a second recognition pass. The total performance is enhanced by the combination of the two recognition passes. Experiments recognizing cursive handwritten words with a 30,000-word lexicon have been carried out. The results demonstrate that our novel approaches achieve better recognition performance and reduce the relative error rate significantly.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Multi-branch and two-pass HMM modeling approaches for off-line cursive handwriting recognition\",\"authors\":\"Wenwei Wang, A. Brakensiek, A. Kosmala, G. Rigoll\",\"doi\":\"10.1109/ICDAR.2001.953789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of large shape variations in human handwriting, cursive handwriting recognition remains a challenging task. Usually, the recognition performance depends crucially upon the pre-processing steps, e.g. the word baseline detection and segmentation process. Hidden Markov models (HMMs) have the ability to model similarities and variations among samples of a class. In this paper, we present a multi-branch HMM modeling method and an HMM-based two-pass modeling approach. Whereas the multi-branch HMM method makes the resulting system more robust with word baseline detection, the two-pass recognition approach exploits the segmentation ability of the Viterbi algorithm and creates another HMM set and carries out a second recognition pass. The total performance is enhanced by the combination of the two recognition passes. Experiments recognizing cursive handwritten words with a 30,000-word lexicon have been carried out. The results demonstrate that our novel approaches achieve better recognition performance and reduce the relative error rate significantly.\",\"PeriodicalId\":277816,\"journal\":{\"name\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2001.953789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-branch and two-pass HMM modeling approaches for off-line cursive handwriting recognition
Because of large shape variations in human handwriting, cursive handwriting recognition remains a challenging task. Usually, the recognition performance depends crucially upon the pre-processing steps, e.g. the word baseline detection and segmentation process. Hidden Markov models (HMMs) have the ability to model similarities and variations among samples of a class. In this paper, we present a multi-branch HMM modeling method and an HMM-based two-pass modeling approach. Whereas the multi-branch HMM method makes the resulting system more robust with word baseline detection, the two-pass recognition approach exploits the segmentation ability of the Viterbi algorithm and creates another HMM set and carries out a second recognition pass. The total performance is enhanced by the combination of the two recognition passes. Experiments recognizing cursive handwritten words with a 30,000-word lexicon have been carried out. The results demonstrate that our novel approaches achieve better recognition performance and reduce the relative error rate significantly.