基于IRIS数据的dct -张量网太阳耀斑探测

Denis Ullmann, S. Voloshynovskiy, L. Kleint, S. Krucker, M. Melchior, C. Huwyler, Brandon Panos
{"title":"基于IRIS数据的dct -张量网太阳耀斑探测","authors":"Denis Ullmann, S. Voloshynovskiy, L. Kleint, S. Krucker, M. Melchior, C. Huwyler, Brandon Panos","doi":"10.1109/EUVIP.2018.8611672","DOIUrl":null,"url":null,"abstract":"Flares are an eruptive phenomenon observed on the sun, which are major protagonists in space weather and can cause adverse effects such as disruptions in communication, power grid failure and damage of satellites. Our method answers the importance of the time component in some scientific video observations, especially for flare detection and the study is based on NASA's Interface Region Imaging Spectrograph (IRIS) observations of the sun since 2013, which consists of a very asymmetrical and unlabeled big data. For detecting and analyzing flares in our IRIS solar video observation data, we created a discrete cosine transform tool DCT- Tensor-Net which uses an empirically handcrafted harmonic representation of our video data. This is one of the first tools for detecting flares based on IRIS images. Our method reduces the false detections of flares by taking into consideration their specific local spatial and temporal patterns.","PeriodicalId":252212,"journal":{"name":"2018 7th European Workshop on Visual Information Processing (EUVIP)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DCT-Tensor-Net for Solar Flares Detection on IRIS Data\",\"authors\":\"Denis Ullmann, S. Voloshynovskiy, L. Kleint, S. Krucker, M. Melchior, C. Huwyler, Brandon Panos\",\"doi\":\"10.1109/EUVIP.2018.8611672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flares are an eruptive phenomenon observed on the sun, which are major protagonists in space weather and can cause adverse effects such as disruptions in communication, power grid failure and damage of satellites. Our method answers the importance of the time component in some scientific video observations, especially for flare detection and the study is based on NASA's Interface Region Imaging Spectrograph (IRIS) observations of the sun since 2013, which consists of a very asymmetrical and unlabeled big data. For detecting and analyzing flares in our IRIS solar video observation data, we created a discrete cosine transform tool DCT- Tensor-Net which uses an empirically handcrafted harmonic representation of our video data. This is one of the first tools for detecting flares based on IRIS images. Our method reduces the false detections of flares by taking into consideration their specific local spatial and temporal patterns.\",\"PeriodicalId\":252212,\"journal\":{\"name\":\"2018 7th European Workshop on Visual Information Processing (EUVIP)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th European Workshop on Visual Information Processing (EUVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUVIP.2018.8611672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2018.8611672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

耀斑是在太阳上观测到的一种爆发现象,是空间天气的主要因素,可造成通信中断、电网故障和卫星损坏等不利影响。我们的方法回答了时间分量在一些科学视频观测中的重要性,特别是对于耀斑探测,该研究基于美国宇航局自2013年以来的界面区域成像光谱仪(IRIS)对太阳的观测,该观测由非常不对称和未标记的大数据组成。为了检测和分析IRIS太阳视频观测数据中的耀斑,我们创建了一个离散余弦变换工具DCT- tensornet,该工具使用经验手工制作的视频数据谐波表示。这是基于IRIS图像检测耀斑的首批工具之一。我们的方法通过考虑耀斑特定的局部空间和时间模式,减少了对耀斑的误检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DCT-Tensor-Net for Solar Flares Detection on IRIS Data
Flares are an eruptive phenomenon observed on the sun, which are major protagonists in space weather and can cause adverse effects such as disruptions in communication, power grid failure and damage of satellites. Our method answers the importance of the time component in some scientific video observations, especially for flare detection and the study is based on NASA's Interface Region Imaging Spectrograph (IRIS) observations of the sun since 2013, which consists of a very asymmetrical and unlabeled big data. For detecting and analyzing flares in our IRIS solar video observation data, we created a discrete cosine transform tool DCT- Tensor-Net which uses an empirically handcrafted harmonic representation of our video data. This is one of the first tools for detecting flares based on IRIS images. Our method reduces the false detections of flares by taking into consideration their specific local spatial and temporal patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信