A. Dikovska, N. Nedyalkov, T. Dilova, G. Atanasova, Georgi Avdeev, Plamen Stefanov
{"title":"PLD制备的金属氧化物纳米结构的气敏性能","authors":"A. Dikovska, N. Nedyalkov, T. Dilova, G. Atanasova, Georgi Avdeev, Plamen Stefanov","doi":"10.1117/12.2516753","DOIUrl":null,"url":null,"abstract":"We report the fabrication of gas sensor elements by pulsed laser deposition in air at atmospheric pressure. We focused our attention on metal-oxide semiconductors, namely, SnO2, TiO2 and MoO3 and studied the samples’ structure and morphology. The deposition technology applied leads to the formation of nanostructures composed of nanoparticles and nano-aggregates. We report preliminary results on the gas-sensing properties of the metal-oxide nanostructures. The sensors were exposed to CO, acetone and ethanol, with the TiO2 nanostructure demonstrating the highest response to CO exposure.","PeriodicalId":355156,"journal":{"name":"International School on Quantum Electronics: Laser Physics and Applications","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gas-sensing properties of metal-oxide nanostructures produced by PLD\",\"authors\":\"A. Dikovska, N. Nedyalkov, T. Dilova, G. Atanasova, Georgi Avdeev, Plamen Stefanov\",\"doi\":\"10.1117/12.2516753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report the fabrication of gas sensor elements by pulsed laser deposition in air at atmospheric pressure. We focused our attention on metal-oxide semiconductors, namely, SnO2, TiO2 and MoO3 and studied the samples’ structure and morphology. The deposition technology applied leads to the formation of nanostructures composed of nanoparticles and nano-aggregates. We report preliminary results on the gas-sensing properties of the metal-oxide nanostructures. The sensors were exposed to CO, acetone and ethanol, with the TiO2 nanostructure demonstrating the highest response to CO exposure.\",\"PeriodicalId\":355156,\"journal\":{\"name\":\"International School on Quantum Electronics: Laser Physics and Applications\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International School on Quantum Electronics: Laser Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2516753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International School on Quantum Electronics: Laser Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2516753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gas-sensing properties of metal-oxide nanostructures produced by PLD
We report the fabrication of gas sensor elements by pulsed laser deposition in air at atmospheric pressure. We focused our attention on metal-oxide semiconductors, namely, SnO2, TiO2 and MoO3 and studied the samples’ structure and morphology. The deposition technology applied leads to the formation of nanostructures composed of nanoparticles and nano-aggregates. We report preliminary results on the gas-sensing properties of the metal-oxide nanostructures. The sensors were exposed to CO, acetone and ethanol, with the TiO2 nanostructure demonstrating the highest response to CO exposure.