地质统计油藏建模中的地震数据集成

Péter Zahuczki
{"title":"地质统计油藏建模中的地震数据集成","authors":"Péter Zahuczki","doi":"10.1556/AGEOL.47.2004.1.6","DOIUrl":null,"url":null,"abstract":"Seismic data integration in reservoir modeling workflows is the one of the fastest-growing fields in the Earth Sciences. The actual geostatistical methods (co-kriging, stochastic simulation) can use seismic data as a secondary variable if there is a well-determined linear correlation between well log data and seismic attribute. Seismic interpreters must often increase this correlation. The application of multi-attributes via neural network may help in this case. A neural network type, called multi-layer perceptron, and its application in 3D porosity distribution prediction in a Hungarian natural gas reservoir, are described in this paper.","PeriodicalId":107929,"journal":{"name":"Acta Geologica Hungarica","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic data integration in geostatistical reservoir modeling\",\"authors\":\"Péter Zahuczki\",\"doi\":\"10.1556/AGEOL.47.2004.1.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seismic data integration in reservoir modeling workflows is the one of the fastest-growing fields in the Earth Sciences. The actual geostatistical methods (co-kriging, stochastic simulation) can use seismic data as a secondary variable if there is a well-determined linear correlation between well log data and seismic attribute. Seismic interpreters must often increase this correlation. The application of multi-attributes via neural network may help in this case. A neural network type, called multi-layer perceptron, and its application in 3D porosity distribution prediction in a Hungarian natural gas reservoir, are described in this paper.\",\"PeriodicalId\":107929,\"journal\":{\"name\":\"Acta Geologica Hungarica\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geologica Hungarica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/AGEOL.47.2004.1.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geologica Hungarica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/AGEOL.47.2004.1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

储层建模工作流程中的地震数据集成是地球科学中发展最快的领域之一。如果测井数据与地震属性之间存在确定的线性相关性,那么实际的地质统计学方法(共同克里格法、随机模拟)可以将地震数据作为次要变量。地震解释人员必须经常增加这种相关性。通过神经网络应用多属性可以帮助解决这一问题。本文介绍了多层感知器神经网络在匈牙利某天然气储层三维孔隙度分布预测中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seismic data integration in geostatistical reservoir modeling
Seismic data integration in reservoir modeling workflows is the one of the fastest-growing fields in the Earth Sciences. The actual geostatistical methods (co-kriging, stochastic simulation) can use seismic data as a secondary variable if there is a well-determined linear correlation between well log data and seismic attribute. Seismic interpreters must often increase this correlation. The application of multi-attributes via neural network may help in this case. A neural network type, called multi-layer perceptron, and its application in 3D porosity distribution prediction in a Hungarian natural gas reservoir, are described in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信