基于小波均值最大熵在BCI信道优化中的应用

Md. Shakhawat Hossain, S. Saha, Md. Ahasan Habib, A. Noman, Takia Sharfuddin, K. Ahmed
{"title":"基于小波均值最大熵在BCI信道优化中的应用","authors":"Md. Shakhawat Hossain, S. Saha, Md. Ahasan Habib, A. Noman, Takia Sharfuddin, K. Ahmed","doi":"10.1109/MEDITEC.2016.7835394","DOIUrl":null,"url":null,"abstract":"Localizing event-related cortical sources is a key factor while developing a computationally efficient Brain Computer Interface (BCI). This paper proposes a unified application of wavelet-based Maximum Entropy on the Mean (wMEM), as a channel selection method, for classifying two motor imagery (MI) tasks using optimal electroencephalography (EEG) sources. The EEG data, which are collected from publicly available BCI Competition III, are captured from five healthy individuals. This source optimization tool has been validated with a generic BCI framework, which utilizes common spatial pattern with and without regularization as preprocessing tools. However, the best classification accuracy attained is 98% using only 11 selected channels that is close to 100% attained using available 118 channels. This result summarizes how optimal EEG channels can be used to develop a BCI system without compromising the performance significantly.","PeriodicalId":325916,"journal":{"name":"2016 International Conference on Medical Engineering, Health Informatics and Technology (MediTec)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Application of wavelet-based maximum entropy on the mean in channel optimization for BCI\",\"authors\":\"Md. Shakhawat Hossain, S. Saha, Md. Ahasan Habib, A. Noman, Takia Sharfuddin, K. Ahmed\",\"doi\":\"10.1109/MEDITEC.2016.7835394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Localizing event-related cortical sources is a key factor while developing a computationally efficient Brain Computer Interface (BCI). This paper proposes a unified application of wavelet-based Maximum Entropy on the Mean (wMEM), as a channel selection method, for classifying two motor imagery (MI) tasks using optimal electroencephalography (EEG) sources. The EEG data, which are collected from publicly available BCI Competition III, are captured from five healthy individuals. This source optimization tool has been validated with a generic BCI framework, which utilizes common spatial pattern with and without regularization as preprocessing tools. However, the best classification accuracy attained is 98% using only 11 selected channels that is close to 100% attained using available 118 channels. This result summarizes how optimal EEG channels can be used to develop a BCI system without compromising the performance significantly.\",\"PeriodicalId\":325916,\"journal\":{\"name\":\"2016 International Conference on Medical Engineering, Health Informatics and Technology (MediTec)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Medical Engineering, Health Informatics and Technology (MediTec)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEDITEC.2016.7835394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Medical Engineering, Health Informatics and Technology (MediTec)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEDITEC.2016.7835394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

事件相关皮质源的定位是开发高效脑机接口(BCI)的关键因素。本文提出了一种统一应用基于小波的均值最大熵(wMEM)作为通道选择方法,利用最优脑电图(EEG)源对两个运动图像(MI)任务进行分类。脑电图数据是从公开可用的脑机接口竞赛III中收集的,来自5个健康个体。该源优化工具已通过通用的BCI框架进行了验证,该框架利用有或没有正则化的公共空间模式作为预处理工具。然而,仅使用11个选定的通道就可以获得98%的最佳分类精度,而使用118个可用通道则接近100%。该结果总结了如何在不显著影响性能的情况下使用最佳脑电通道来开发脑机接口系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of wavelet-based maximum entropy on the mean in channel optimization for BCI
Localizing event-related cortical sources is a key factor while developing a computationally efficient Brain Computer Interface (BCI). This paper proposes a unified application of wavelet-based Maximum Entropy on the Mean (wMEM), as a channel selection method, for classifying two motor imagery (MI) tasks using optimal electroencephalography (EEG) sources. The EEG data, which are collected from publicly available BCI Competition III, are captured from five healthy individuals. This source optimization tool has been validated with a generic BCI framework, which utilizes common spatial pattern with and without regularization as preprocessing tools. However, the best classification accuracy attained is 98% using only 11 selected channels that is close to 100% attained using available 118 channels. This result summarizes how optimal EEG channels can be used to develop a BCI system without compromising the performance significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信