汉语内隐话语关系识别神经模型的系统研究

Dejian Li, Man Lan, Yuanbin Wu
{"title":"汉语内隐话语关系识别神经模型的系统研究","authors":"Dejian Li, Man Lan, Yuanbin Wu","doi":"10.1109/IALP48816.2019.9037686","DOIUrl":null,"url":null,"abstract":"The Chinese implicit discourse relationship recognition is more challenging than English due to the lack of discourse connectives and high frequency in the text. So far, there is no systematical investigation into the neural components for Chinese implicit discourse relationship. To fill this gap, in this work we present a component-based neural framework to systematically study the Chinese implicit discourse relationship. Experimental results showed that our proposed neural Chinese implicit discourse parser achieves the SOTA performance in CoNLL-2016 corpus.","PeriodicalId":208066,"journal":{"name":"2019 International Conference on Asian Language Processing (IALP)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Systematic Investigation of Neural Models for Chinese Implicit Discourse Relationship Recognition\",\"authors\":\"Dejian Li, Man Lan, Yuanbin Wu\",\"doi\":\"10.1109/IALP48816.2019.9037686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Chinese implicit discourse relationship recognition is more challenging than English due to the lack of discourse connectives and high frequency in the text. So far, there is no systematical investigation into the neural components for Chinese implicit discourse relationship. To fill this gap, in this work we present a component-based neural framework to systematically study the Chinese implicit discourse relationship. Experimental results showed that our proposed neural Chinese implicit discourse parser achieves the SOTA performance in CoNLL-2016 corpus.\",\"PeriodicalId\":208066,\"journal\":{\"name\":\"2019 International Conference on Asian Language Processing (IALP)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP48816.2019.9037686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP48816.2019.9037686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

汉语隐性语篇关系识别比英语更具挑战性,因为汉语语篇连接词较少,语篇使用频率高。到目前为止,对汉语内隐话语关系的神经成分还没有系统的研究。为了填补这一空白,本文提出了一个基于组件的神经网络框架来系统地研究汉语隐含语篇关系。实验结果表明,本文提出的神经网络中文隐式语篇解析器在CoNLL-2016语料库中达到了SOTA的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Systematic Investigation of Neural Models for Chinese Implicit Discourse Relationship Recognition
The Chinese implicit discourse relationship recognition is more challenging than English due to the lack of discourse connectives and high frequency in the text. So far, there is no systematical investigation into the neural components for Chinese implicit discourse relationship. To fill this gap, in this work we present a component-based neural framework to systematically study the Chinese implicit discourse relationship. Experimental results showed that our proposed neural Chinese implicit discourse parser achieves the SOTA performance in CoNLL-2016 corpus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信