基于自适应混合算法的虚拟电厂超短期预测方法

Yu Zhu, Q. Lu, Yinguo Yang, Bo Li, Yingming Lin, Yan Tan, Zhongkai Yi, Kang Wang, Yinliang Xu
{"title":"基于自适应混合算法的虚拟电厂超短期预测方法","authors":"Yu Zhu, Q. Lu, Yinguo Yang, Bo Li, Yingming Lin, Yan Tan, Zhongkai Yi, Kang Wang, Yinliang Xu","doi":"10.1109/ISGT-Asia.2019.8881352","DOIUrl":null,"url":null,"abstract":"Virtual power plant (VPP) emerges as a new concept to promote the efficient utilization of renewable energy resources (RES) and flexible loads. RES forecasting approach is an important item to ensure the stability and economy in VPP dispatching and bidding. In this paper, considering multienvironmental factors, a very short-term photovoltaic (PV) forecasting approach based on a self-adaptive simulated annealing hybrid genetic algorithm (SA-GA) and backpropagation neural network (BP) algorithm is proposed. Numerical studies illustrate that the proposed approach achieves a satisfactory forecasting accuracy and offers a high computation efficiency, which indicates its promising application value in RES forecasting for VPP.","PeriodicalId":257974,"journal":{"name":"2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Very Short-term Forecasting Approach for Virtual Power Plant Using a Self-adaptive Hybrid Algorithm\",\"authors\":\"Yu Zhu, Q. Lu, Yinguo Yang, Bo Li, Yingming Lin, Yan Tan, Zhongkai Yi, Kang Wang, Yinliang Xu\",\"doi\":\"10.1109/ISGT-Asia.2019.8881352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtual power plant (VPP) emerges as a new concept to promote the efficient utilization of renewable energy resources (RES) and flexible loads. RES forecasting approach is an important item to ensure the stability and economy in VPP dispatching and bidding. In this paper, considering multienvironmental factors, a very short-term photovoltaic (PV) forecasting approach based on a self-adaptive simulated annealing hybrid genetic algorithm (SA-GA) and backpropagation neural network (BP) algorithm is proposed. Numerical studies illustrate that the proposed approach achieves a satisfactory forecasting accuracy and offers a high computation efficiency, which indicates its promising application value in RES forecasting for VPP.\",\"PeriodicalId\":257974,\"journal\":{\"name\":\"2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT-Asia.2019.8881352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT-Asia.2019.8881352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虚拟电厂(VPP)是为了促进可再生能源的高效利用和灵活负荷而出现的一个新概念。可再生能源预测方法是VPP调度投标中保证稳定性和经济性的重要内容。本文在考虑多环境因素的基础上,提出了一种基于自适应模拟退火混合遗传算法(SA-GA)和反向传播神经网络(BP)算法的极短期光伏(PV)预测方法。数值研究表明,该方法具有较好的预测精度和较高的计算效率,在VPP的RES预测中具有较好的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Very Short-term Forecasting Approach for Virtual Power Plant Using a Self-adaptive Hybrid Algorithm
Virtual power plant (VPP) emerges as a new concept to promote the efficient utilization of renewable energy resources (RES) and flexible loads. RES forecasting approach is an important item to ensure the stability and economy in VPP dispatching and bidding. In this paper, considering multienvironmental factors, a very short-term photovoltaic (PV) forecasting approach based on a self-adaptive simulated annealing hybrid genetic algorithm (SA-GA) and backpropagation neural network (BP) algorithm is proposed. Numerical studies illustrate that the proposed approach achieves a satisfactory forecasting accuracy and offers a high computation efficiency, which indicates its promising application value in RES forecasting for VPP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信