{"title":"基于实例的人体姿态恢复中轮廓形状描述符的比较","authors":"R. Poppe, M. Poel","doi":"10.1109/FGR.2006.32","DOIUrl":null,"url":null,"abstract":"Automatically recovering human poses from visual input is useful but challenging due to variations in image space and the high dimensionality of the pose space. In this paper, we assume that a human silhouette can be extracted from monocular visual input. We compare three shape descriptors that are used in the encoding of silhouettes: Fourier descriptors, shape contexts and Hu moments. An example-based approach is taken to recover upper body poses from these descriptors. We perform experiments with deformed silhouettes to test each descriptor's robustness against variations in body dimensions, viewpoint and noise. It is shown that Fourier descriptors and shape context histograms outperform Hu moments for all deformations","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Comparison of silhouette shape descriptors for example-based human pose recovery\",\"authors\":\"R. Poppe, M. Poel\",\"doi\":\"10.1109/FGR.2006.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatically recovering human poses from visual input is useful but challenging due to variations in image space and the high dimensionality of the pose space. In this paper, we assume that a human silhouette can be extracted from monocular visual input. We compare three shape descriptors that are used in the encoding of silhouettes: Fourier descriptors, shape contexts and Hu moments. An example-based approach is taken to recover upper body poses from these descriptors. We perform experiments with deformed silhouettes to test each descriptor's robustness against variations in body dimensions, viewpoint and noise. It is shown that Fourier descriptors and shape context histograms outperform Hu moments for all deformations\",\"PeriodicalId\":109260,\"journal\":{\"name\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGR.2006.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of silhouette shape descriptors for example-based human pose recovery
Automatically recovering human poses from visual input is useful but challenging due to variations in image space and the high dimensionality of the pose space. In this paper, we assume that a human silhouette can be extracted from monocular visual input. We compare three shape descriptors that are used in the encoding of silhouettes: Fourier descriptors, shape contexts and Hu moments. An example-based approach is taken to recover upper body poses from these descriptors. We perform experiments with deformed silhouettes to test each descriptor's robustness against variations in body dimensions, viewpoint and noise. It is shown that Fourier descriptors and shape context histograms outperform Hu moments for all deformations