重复微阵列实验的非参数分析

A. Gannoun, J. Saracco, W. Urfer, G. Bonney
{"title":"重复微阵列实验的非参数分析","authors":"A. Gannoun, J. Saracco, W. Urfer, G. Bonney","doi":"10.1191/1471082X04st073oa","DOIUrl":null,"url":null,"abstract":"Microarrays are part of a new class of biotechnologies, which allow the monitoring of expression levels of thousands of genes simultaneously. In microarray data analysis, the comparison of gene expression profiles with respect to different conditions and the selection of biologically interesting genes are crucial tasks. Multivariate statistical methods have been applied to analyze these large data sets. To identify genes with altered expression under two experimental conditions, we propose a nonparametric statistical approach. Specifically, we propose estimating the distributions of a t-type statistic and its null statistic, using kernel methods. A comparison of these two distributions by means of a likelihood ratio test can identify genes with significantly changed expressions. A new method to provide more stable estimates of tail probabilities is proposed, as well as a method for the calculation of the cut-off point and the acceptance region. The methodology is applied to a leukaemia data set containing expression levels of 7129 genes, and is compared with normal mixture model and the traditional t-test.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Nonparametric analysis of replicated microarray experiments\",\"authors\":\"A. Gannoun, J. Saracco, W. Urfer, G. Bonney\",\"doi\":\"10.1191/1471082X04st073oa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microarrays are part of a new class of biotechnologies, which allow the monitoring of expression levels of thousands of genes simultaneously. In microarray data analysis, the comparison of gene expression profiles with respect to different conditions and the selection of biologically interesting genes are crucial tasks. Multivariate statistical methods have been applied to analyze these large data sets. To identify genes with altered expression under two experimental conditions, we propose a nonparametric statistical approach. Specifically, we propose estimating the distributions of a t-type statistic and its null statistic, using kernel methods. A comparison of these two distributions by means of a likelihood ratio test can identify genes with significantly changed expressions. A new method to provide more stable estimates of tail probabilities is proposed, as well as a method for the calculation of the cut-off point and the acceptance region. The methodology is applied to a leukaemia data set containing expression levels of 7129 genes, and is compared with normal mixture model and the traditional t-test.\",\"PeriodicalId\":354759,\"journal\":{\"name\":\"Statistical Modeling\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1191/1471082X04st073oa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X04st073oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

微阵列是一类新型生物技术的一部分,它可以同时监测数千个基因的表达水平。在微阵列数据分析中,比较不同条件下的基因表达谱和选择生物学上感兴趣的基因是至关重要的任务。多元统计方法已被应用于分析这些大数据集。为了鉴定在两种实验条件下表达改变的基因,我们提出了一种非参数统计方法。具体来说,我们提出使用核方法估计t型统计量及其零统计量的分布。通过似然比检验对这两种分布进行比较,可以识别出表达有显著变化的基因。提出了一种提供更稳定的尾概率估计的新方法,以及截断点和可接受区域的计算方法。将该方法应用于包含7129个基因表达水平的白血病数据集,并与正常混合模型和传统t检验进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric analysis of replicated microarray experiments
Microarrays are part of a new class of biotechnologies, which allow the monitoring of expression levels of thousands of genes simultaneously. In microarray data analysis, the comparison of gene expression profiles with respect to different conditions and the selection of biologically interesting genes are crucial tasks. Multivariate statistical methods have been applied to analyze these large data sets. To identify genes with altered expression under two experimental conditions, we propose a nonparametric statistical approach. Specifically, we propose estimating the distributions of a t-type statistic and its null statistic, using kernel methods. A comparison of these two distributions by means of a likelihood ratio test can identify genes with significantly changed expressions. A new method to provide more stable estimates of tail probabilities is proposed, as well as a method for the calculation of the cut-off point and the acceptance region. The methodology is applied to a leukaemia data set containing expression levels of 7129 genes, and is compared with normal mixture model and the traditional t-test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信