生物信息学中文本分类和文本摘要的综合工具

Mustofa Kamal, Kazi Zakia Sultana
{"title":"生物信息学中文本分类和文本摘要的综合工具","authors":"Mustofa Kamal, Kazi Zakia Sultana","doi":"10.1109/ICCITECHN.2012.6509764","DOIUrl":null,"url":null,"abstract":"The work focuses on the integration of text categorization and text summarization tasks based on some existing algorithms. We primarily employ the method for bioinformatics literatures to categorize them in relevant domains of bioinformatics and then get a summarized overview of each of the documents in the domain. For text categorization we have chosen three different and core domains of bioinformatics: Protein-Protein Interaction, Disease-Drug Relevance and Pathway-Process Involvement. The method uses TF-IDF based technology for the categorization task and then after categorization it summarizes the key contents of each document using some existing features. The system plays important role in automatically reducing review spaces for the researchers as they do not need to manually select their relevant texts. It also saves time by providing ranked and significantly relevant lines of the documents. Our method outperforms other existing summarization tools in the sense that it optimizes summarization by first categorizing the documents on the basis of TF-IDF technology and then avoids redundant information by properly ranking the sentences using existing score.","PeriodicalId":127060,"journal":{"name":"2012 15th International Conference on Computer and Information Technology (ICCIT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A comprehensive tool for text categorization and text summarization in bioinformatics\",\"authors\":\"Mustofa Kamal, Kazi Zakia Sultana\",\"doi\":\"10.1109/ICCITECHN.2012.6509764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work focuses on the integration of text categorization and text summarization tasks based on some existing algorithms. We primarily employ the method for bioinformatics literatures to categorize them in relevant domains of bioinformatics and then get a summarized overview of each of the documents in the domain. For text categorization we have chosen three different and core domains of bioinformatics: Protein-Protein Interaction, Disease-Drug Relevance and Pathway-Process Involvement. The method uses TF-IDF based technology for the categorization task and then after categorization it summarizes the key contents of each document using some existing features. The system plays important role in automatically reducing review spaces for the researchers as they do not need to manually select their relevant texts. It also saves time by providing ranked and significantly relevant lines of the documents. Our method outperforms other existing summarization tools in the sense that it optimizes summarization by first categorizing the documents on the basis of TF-IDF technology and then avoids redundant information by properly ranking the sentences using existing score.\",\"PeriodicalId\":127060,\"journal\":{\"name\":\"2012 15th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 15th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHN.2012.6509764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 15th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2012.6509764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在现有算法的基础上,重点研究了文本分类和文本摘要任务的集成。我们首先采用生物信息学文献的方法对生物信息学相关领域的文献进行分类,然后对该领域的每一篇文献进行总结概述。对于文本分类,我们选择了生物信息学的三个不同的核心领域:蛋白质-蛋白质相互作用,疾病-药物相关性和途径-过程参与。该方法使用基于TF-IDF的技术进行分类任务,然后在分类后利用一些已有的特征总结出每个文档的关键内容。该系统在自动减少研究人员的审查空间方面发挥了重要作用,因为他们不需要手动选择相关的文本。它还通过提供排序和显著相关的文档行来节省时间。我们的方法优于其他现有的摘要工具,因为它首先基于TF-IDF技术对文档进行分类,然后通过使用现有分数对句子进行适当排序来避免冗余信息,从而优化了摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comprehensive tool for text categorization and text summarization in bioinformatics
The work focuses on the integration of text categorization and text summarization tasks based on some existing algorithms. We primarily employ the method for bioinformatics literatures to categorize them in relevant domains of bioinformatics and then get a summarized overview of each of the documents in the domain. For text categorization we have chosen three different and core domains of bioinformatics: Protein-Protein Interaction, Disease-Drug Relevance and Pathway-Process Involvement. The method uses TF-IDF based technology for the categorization task and then after categorization it summarizes the key contents of each document using some existing features. The system plays important role in automatically reducing review spaces for the researchers as they do not need to manually select their relevant texts. It also saves time by providing ranked and significantly relevant lines of the documents. Our method outperforms other existing summarization tools in the sense that it optimizes summarization by first categorizing the documents on the basis of TF-IDF technology and then avoids redundant information by properly ranking the sentences using existing score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信