通过全自动字幕增强学习可及性

Maria Federico, M. Furini
{"title":"通过全自动字幕增强学习可及性","authors":"Maria Federico, M. Furini","doi":"10.1145/2207016.2207053","DOIUrl":null,"url":null,"abstract":"The simple act of listening or of taking notes while attending a lesson may represent an insuperable burden for millions of people with some form of disabilities (e.g., hearing impaired, dyslexic and ESL students). In this paper, we propose an architecture that aims at automatically creating captions for video lessons by exploiting advances in speech recognition technologies. Our approach couples the usage of off-the-shelf ASR (Automatic Speech Recognition) software with a novel caption alignment mechanism that smartly introduces unique audio markups into the audio stream before giving it to the ASR and transforms the plain transcript produced by the ASR into a timecoded transcript.","PeriodicalId":339122,"journal":{"name":"International Cross-Disciplinary Conference on Web Accessibility","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Enhancing learning accessibility through fully automatic captioning\",\"authors\":\"Maria Federico, M. Furini\",\"doi\":\"10.1145/2207016.2207053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The simple act of listening or of taking notes while attending a lesson may represent an insuperable burden for millions of people with some form of disabilities (e.g., hearing impaired, dyslexic and ESL students). In this paper, we propose an architecture that aims at automatically creating captions for video lessons by exploiting advances in speech recognition technologies. Our approach couples the usage of off-the-shelf ASR (Automatic Speech Recognition) software with a novel caption alignment mechanism that smartly introduces unique audio markups into the audio stream before giving it to the ASR and transforms the plain transcript produced by the ASR into a timecoded transcript.\",\"PeriodicalId\":339122,\"journal\":{\"name\":\"International Cross-Disciplinary Conference on Web Accessibility\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Cross-Disciplinary Conference on Web Accessibility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2207016.2207053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Cross-Disciplinary Conference on Web Accessibility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2207016.2207053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

上课时听或记笔记的简单行为可能对数百万患有某种形式残疾的人(例如听力受损、阅读困难和ESL学生)来说是无法克服的负担。在本文中,我们提出了一种架构,旨在通过利用语音识别技术的进步,自动为视频课程创建字幕。我们的方法将现成的ASR(自动语音识别)软件的使用与一种新颖的标题对齐机制相结合,该机制在将音频流提供给ASR之前巧妙地将独特的音频标记引入音频流,并将ASR产生的普通文本转换为时间编码的文本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing learning accessibility through fully automatic captioning
The simple act of listening or of taking notes while attending a lesson may represent an insuperable burden for millions of people with some form of disabilities (e.g., hearing impaired, dyslexic and ESL students). In this paper, we propose an architecture that aims at automatically creating captions for video lessons by exploiting advances in speech recognition technologies. Our approach couples the usage of off-the-shelf ASR (Automatic Speech Recognition) software with a novel caption alignment mechanism that smartly introduces unique audio markups into the audio stream before giving it to the ASR and transforms the plain transcript produced by the ASR into a timecoded transcript.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信