{"title":"Hopfield神经网络作为伪随机数生成器","authors":"Kayvan Tirdad, A. Sadeghian","doi":"10.1109/NAFIPS.2010.5548182","DOIUrl":null,"url":null,"abstract":"Pseudo random number generators (PRNG) play a key role in various security and cryptographic applications where the performance of these applications is directly related to the quality of generated random numbers. The design of such random number generators is a challenging task. In this paper, we propose an application of Hopfield Neural Networks (HNN) as pseudo random number generator. This is done based on a unique property of HNN, i.e., its unpredictable behavior under certain conditions. We compare the main features of ideal random number generators with those of PRNG based on Hopfield Neural Networks. We use a battery of statistical tests developed by National Institute of Standards and Technology (NIST) to measure the performance, and to evaluate the quality of the proposed Hopfield random number generator.","PeriodicalId":394892,"journal":{"name":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Hopfield neural networks as pseudo random number generators\",\"authors\":\"Kayvan Tirdad, A. Sadeghian\",\"doi\":\"10.1109/NAFIPS.2010.5548182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pseudo random number generators (PRNG) play a key role in various security and cryptographic applications where the performance of these applications is directly related to the quality of generated random numbers. The design of such random number generators is a challenging task. In this paper, we propose an application of Hopfield Neural Networks (HNN) as pseudo random number generator. This is done based on a unique property of HNN, i.e., its unpredictable behavior under certain conditions. We compare the main features of ideal random number generators with those of PRNG based on Hopfield Neural Networks. We use a battery of statistical tests developed by National Institute of Standards and Technology (NIST) to measure the performance, and to evaluate the quality of the proposed Hopfield random number generator.\",\"PeriodicalId\":394892,\"journal\":{\"name\":\"2010 Annual Meeting of the North American Fuzzy Information Processing Society\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Annual Meeting of the North American Fuzzy Information Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2010.5548182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2010.5548182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hopfield neural networks as pseudo random number generators
Pseudo random number generators (PRNG) play a key role in various security and cryptographic applications where the performance of these applications is directly related to the quality of generated random numbers. The design of such random number generators is a challenging task. In this paper, we propose an application of Hopfield Neural Networks (HNN) as pseudo random number generator. This is done based on a unique property of HNN, i.e., its unpredictable behavior under certain conditions. We compare the main features of ideal random number generators with those of PRNG based on Hopfield Neural Networks. We use a battery of statistical tests developed by National Institute of Standards and Technology (NIST) to measure the performance, and to evaluate the quality of the proposed Hopfield random number generator.