Hopfield神经网络作为伪随机数生成器

Kayvan Tirdad, A. Sadeghian
{"title":"Hopfield神经网络作为伪随机数生成器","authors":"Kayvan Tirdad, A. Sadeghian","doi":"10.1109/NAFIPS.2010.5548182","DOIUrl":null,"url":null,"abstract":"Pseudo random number generators (PRNG) play a key role in various security and cryptographic applications where the performance of these applications is directly related to the quality of generated random numbers. The design of such random number generators is a challenging task. In this paper, we propose an application of Hopfield Neural Networks (HNN) as pseudo random number generator. This is done based on a unique property of HNN, i.e., its unpredictable behavior under certain conditions. We compare the main features of ideal random number generators with those of PRNG based on Hopfield Neural Networks. We use a battery of statistical tests developed by National Institute of Standards and Technology (NIST) to measure the performance, and to evaluate the quality of the proposed Hopfield random number generator.","PeriodicalId":394892,"journal":{"name":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Hopfield neural networks as pseudo random number generators\",\"authors\":\"Kayvan Tirdad, A. Sadeghian\",\"doi\":\"10.1109/NAFIPS.2010.5548182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pseudo random number generators (PRNG) play a key role in various security and cryptographic applications where the performance of these applications is directly related to the quality of generated random numbers. The design of such random number generators is a challenging task. In this paper, we propose an application of Hopfield Neural Networks (HNN) as pseudo random number generator. This is done based on a unique property of HNN, i.e., its unpredictable behavior under certain conditions. We compare the main features of ideal random number generators with those of PRNG based on Hopfield Neural Networks. We use a battery of statistical tests developed by National Institute of Standards and Technology (NIST) to measure the performance, and to evaluate the quality of the proposed Hopfield random number generator.\",\"PeriodicalId\":394892,\"journal\":{\"name\":\"2010 Annual Meeting of the North American Fuzzy Information Processing Society\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Annual Meeting of the North American Fuzzy Information Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2010.5548182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2010.5548182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

伪随机数生成器(PRNG)在各种安全和加密应用程序中发挥着关键作用,这些应用程序的性能与生成的随机数的质量直接相关。这种随机数生成器的设计是一项具有挑战性的任务。本文提出了Hopfield神经网络(HNN)作为伪随机数生成器的一个应用。这是基于HNN的一个独特属性,即它在某些条件下的不可预测行为。我们比较了理想随机数生成器与基于Hopfield神经网络的PRNG的主要特征。我们使用美国国家标准与技术研究所(NIST)开发的一系列统计测试来衡量性能,并评估所提出的Hopfield随机数生成器的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hopfield neural networks as pseudo random number generators
Pseudo random number generators (PRNG) play a key role in various security and cryptographic applications where the performance of these applications is directly related to the quality of generated random numbers. The design of such random number generators is a challenging task. In this paper, we propose an application of Hopfield Neural Networks (HNN) as pseudo random number generator. This is done based on a unique property of HNN, i.e., its unpredictable behavior under certain conditions. We compare the main features of ideal random number generators with those of PRNG based on Hopfield Neural Networks. We use a battery of statistical tests developed by National Institute of Standards and Technology (NIST) to measure the performance, and to evaluate the quality of the proposed Hopfield random number generator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信