广域监控系统的简化模型状态估计

Amamihe Onwuachumba, M. Musavi
{"title":"广域监控系统的简化模型状态估计","authors":"Amamihe Onwuachumba, M. Musavi","doi":"10.1109/EPEC.2015.7379986","DOIUrl":null,"url":null,"abstract":"This paper presents an alternative approach to multiarea state estimation. The proposed approach utilizes a fewer number of measurements than conventional state estimators and is unaffected by errors in system models. The measurements used are identified using principal component analysis, while artificial neural networks are used to implement the state estimation function. The performance of the proposed technique is demonstrated on the IEEE 118-bus and Polish 2383-bus systems.","PeriodicalId":231255,"journal":{"name":"2015 IEEE Electrical Power and Energy Conference (EPEC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced model state estimation for Wide-Area Monitoring Systems\",\"authors\":\"Amamihe Onwuachumba, M. Musavi\",\"doi\":\"10.1109/EPEC.2015.7379986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an alternative approach to multiarea state estimation. The proposed approach utilizes a fewer number of measurements than conventional state estimators and is unaffected by errors in system models. The measurements used are identified using principal component analysis, while artificial neural networks are used to implement the state estimation function. The performance of the proposed technique is demonstrated on the IEEE 118-bus and Polish 2383-bus systems.\",\"PeriodicalId\":231255,\"journal\":{\"name\":\"2015 IEEE Electrical Power and Energy Conference (EPEC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Electrical Power and Energy Conference (EPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEC.2015.7379986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Electrical Power and Energy Conference (EPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEC.2015.7379986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种多区域状态估计的替代方法。该方法比传统的状态估计器使用更少的测量量,并且不受系统模型误差的影响。使用主成分分析识别测量值,使用人工神经网络实现状态估计函数。在IEEE 118总线和波兰2383总线系统上验证了该技术的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced model state estimation for Wide-Area Monitoring Systems
This paper presents an alternative approach to multiarea state estimation. The proposed approach utilizes a fewer number of measurements than conventional state estimators and is unaffected by errors in system models. The measurements used are identified using principal component analysis, while artificial neural networks are used to implement the state estimation function. The performance of the proposed technique is demonstrated on the IEEE 118-bus and Polish 2383-bus systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信