用Sysml描述一种从推断的行为和数据模型半自动生成软件的新方法

I. G. Alonso, M. P. A. G. Fuente, J. Brugos
{"title":"用Sysml描述一种从推断的行为和数据模型半自动生成软件的新方法","authors":"I. G. Alonso, M. P. A. G. Fuente, J. Brugos","doi":"10.1109/ICONS.2009.50","DOIUrl":null,"url":null,"abstract":"This article describes a new methodology designed for semiautomatic generation of software applications using the new standard of OMG consortium: SYSML. The methodology has behavior and data model inference steps. Both data and behavior are inferred, the first by XSD-Schema inference and the latter by Business Process Mining inferences. The paper describes how by using SYSML a better description of the methodology is given, a description that allows making a better design than using UML standard tools.","PeriodicalId":270103,"journal":{"name":"2009 Fourth International Conference on Systems","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Using Sysml to Describe a New Methodology for Semiautomatic Software Generation from Inferred Behavioral and Data Models\",\"authors\":\"I. G. Alonso, M. P. A. G. Fuente, J. Brugos\",\"doi\":\"10.1109/ICONS.2009.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes a new methodology designed for semiautomatic generation of software applications using the new standard of OMG consortium: SYSML. The methodology has behavior and data model inference steps. Both data and behavior are inferred, the first by XSD-Schema inference and the latter by Business Process Mining inferences. The paper describes how by using SYSML a better description of the methodology is given, a description that allows making a better design than using UML standard tools.\",\"PeriodicalId\":270103,\"journal\":{\"name\":\"2009 Fourth International Conference on Systems\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Fourth International Conference on Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONS.2009.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fourth International Conference on Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONS.2009.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文描述了一种使用OMG联盟的新标准SYSML为半自动生成软件应用程序而设计的新方法。该方法具有行为和数据模型推理步骤。数据和行为都是推断出来的,前者通过XSD-Schema推断,后者通过业务流程挖掘推断。本文描述了如何通过使用SYSML更好地描述方法,这种描述允许比使用UML标准工具做出更好的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Sysml to Describe a New Methodology for Semiautomatic Software Generation from Inferred Behavioral and Data Models
This article describes a new methodology designed for semiautomatic generation of software applications using the new standard of OMG consortium: SYSML. The methodology has behavior and data model inference steps. Both data and behavior are inferred, the first by XSD-Schema inference and the latter by Business Process Mining inferences. The paper describes how by using SYSML a better description of the methodology is given, a description that allows making a better design than using UML standard tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信